bp神经网络matlab实例_人工神经网络学习笔记2——MATLAB神经网络工具箱

这篇博客介绍了MATLAB神经网络工具箱的使用流程,适合初学者。通过nnstart启动图形用户界面,选择网络结构,设定输入、目标值,调整训练比例,并配置隐藏层神经元数量。使用nftool进一步定制网络,训练并观察性能图表。最后,保存训练结果,便于后续分析和应用。
摘要由CSDN通过智能技术生成

0d02f9cb6f6110c54a327bf987717567.png

神经网络理论的初学者可以利用MATLAB自带的神经网络工具箱来理解ANN算法。

神经网络工具箱模型包括如下内容:

· 感知器

· 线性网络

· BP网络

· 径向基函数网络

· 竞争型神经网络

· 自组织网络和学习向量量化网络

· 反馈网络


神经网络工具箱的使用

在命令行窗口输入nnstart,可以打开MATLAB提供的神经网络图形用户界面,如图1所示:

62a141b91c091fabc6362ed17fcfdfa1.png
图1 神经网络图形用户界面

再次点击该界面的‘Fitting app’按钮,打开神经网络工具箱。正如上图显示的一样,直接在命令行窗口输入‘nftool’打开神经网络工具箱。点击之后界面如图2所示:

09a8a42c0c1d3c2c775f64cf09072442.png
图2 神经网络工具箱

可以很清楚的看到,一个人工神经网络模型是由‘Input’,‘Hidden Layer’,‘Output Layer’和‘Output’三(四)个主要成分构成,单击‘Next’按钮继续下面的操作。

07cc80af9aa5d0000b21b9433ac6de45.png
图3 输入值及目标值选择界面

‘Input’和‘Targets’可以分别选择神经网络的输入及目标值,此处为了演示,我选择了‘Load Example Data Set’按钮用系统自带的数据‘House’导入到要训练的神经网络中,此时输入为‘houseinputs’,目标为‘house Targets’,单击Next继续下一步操作。

4f47e396eba3e9ce964a4bac595898ea.png
图4 样本比例选择界面

阅读图4中信息,我们需要设置用于训练、验证和测试的样本比例,默认为70:15:15。选择完成之后单击‘Next’,开始建立图5所示神经网络结构图。本神经网络共3层,分别为输入层、输出层和隐含层,其中隐含层的神经元数目可以在途中修改。

26dbb88d030def4c7e06650af6919082.png
图5 神经网络隐含层神经元数目选择

确定神经网络隐含层神经元后,单击‘Next’按钮,确定神经网络结构,在出现的界面中可以选择是否训练神经网络,如图6所示。

ca0f0b839c11d78d53ce84f08c43f179.png
图6 神经网络的确定

单击‘Train’按钮,选择训练之前确定的神经网络,如图7所示。

b63a81b8e7a4be7fe8e7864929a327f7.png
图7 训练神经网络

出现如图所示结果,则说明神经网络已经训练完成,可以在‘Plots’选项内选择需要看到的图形信息。‘Performance’按钮可以显示训练结果示意图;‘Training State’可以得到神经网络训练参数的变化过程示意图,如图8,9所示。

14b5538bb5f97aa833e7770848c72604.png
图8 训练结果

d87b3e9d1241c720ff09aa35d83a023c.png
图9 训练参数变化曲线

训练完成后,连续单击‘Next’两次,在神经网络的确定窗口中可以保存此次训练结果。

cca3de99df6bdcbd29234ea3fe8a74e1.png
图10 保存结果

准备文书准备的心力憔悴,以上是MATLAB神经网络工具箱的具体使用流程,更多的细节望大家自己去挖掘!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值