python opencv local_threshold_Python+OpenCV图像处理之图像二值化实现代码

本篇文章小编给大家分享一下Python+OpenCV图像处理之图像二值化实现代码,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。

图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。

普通图像二值化

代码如下:

import cv2 as cv

import numpy as np

#全局阈值

def threshold_demo(image):

gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化

#直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。

ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)

print("threshold value %s"%ret)

cv.namedWindow("binary0", cv.WINDOW_NORMAL)

cv.imshow("binary0", binary)

#局部阈值

def local_threshold(image):

gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化

#自适应阈值化能够根据图像不同区域亮度分布,改变阈值

binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY, 25, 10)

cv.namedWindow("binary1", cv.WINDOW_NORMAL)

cv.imshow("binary1", binary)

#用户自己计算阈值

def custom_threshold(image):

gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化

h, w =gray.shape[:2]

m = np.reshape(gray, [1,w*h])

mean = m.sum()/(w*h)

print("mean:",mean)

ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)

cv.namedWindow("binary2", cv.WINDOW_NORMAL)

cv.imshow("binary2", binary)

src = cv.imread('E:/imageload/kobe.jpg')

cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放

cv.imshow('input_image', src)

threshold_demo(src)

local_threshold(src)

custom_threshold(src)

cv.waitKey(0)

cv.destroyAllWindows()

运行结果:

5f93f06ee4988.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值