matlab使用python返回数组_matlab结构数组到python

更新:你可能想调查

Pandas.它

系列和DataFrame比NumPy更易于使用且功能更全面

结构化数组.

import numpy as np

channel = np.zeros(1, dtype = [('PRN',int),

('acquiredFreq',int),

('codePhase',int),

('status','|S1')])

print(channel)

# [(0, 0, 0, '')]

通过整数索引访问特定行:

print(channel[0])

# (0, 0, 0, '')

按列名索引将列作为数组返回:

print(channel['PRN'])

# [0]

或者你可以遍历每一行并分配给每个字段(列),

但这在NumPy中相对较慢.

for row in channel:

row['PRN'] = 1

row['acquiredFreq'] = 1

row['codePhase'] = 1

row['status'] = '+'

print(channel)

# [(1, 1, 1, '+')]

为了完整起见,我还要提到你可以按行分配列:

channel[0]['status'] = '-'

print(channel)

# [(1, 1, 1, '-')]

或按列分配然后行:

channel['PRN'][0] = 10

print(channel)

# [(10, 1, 1, '-')]

我展示了上述内容,因为它与您发布的Matlab代码最相似.但是,让我再次强调,分配给NumPy数组中的单个单元格很慢.以上NumPy方式是做整数组赋值:

channel['PRN'] = PRNindexes

其中PRNindexes是一个序列(例如列表,元组或NumPy数组).

您还可以使用fancy indexing(也称为“高级索引”)来选择行:

index = (channel.status == '+') # Select all rows with status '+'

channel['PRN'][index] = 10 # Set PRN to 10 for all those rows

请记住,花哨的索引会返回一个新数组,而不是原始数组的视图. (相反,“基本切片”(例如通道[0]或通道[1:10]返回一个视图.)因此,如果要进行更改原始数组的赋值,请先按列选择,然后选择花式索引(索引)

channel['PRN'][index] = ...

而不是

channel[index]['PRN'] = ...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值