python生成一列有0有1的矩阵_如何在Python中生成0-1矩阵的所有可能组合?

这篇博客探讨了如何使用Python的numpy和itertools库生成大小为K的0-1矩阵的所有可能组合。通过`np.reshape`和`np.array`结合`itertools.product`的笛卡尔积功能,可以轻松实现这一目标。
摘要由CSDN通过智能技术生成

如何生成大小为K的0-1矩阵的所有可能组合?

例如,如果我取K = 2且N = 2,我得到以下组合.

combination 1

[0, 0;

0, 0];

combination 2

[1, 0;

0, 0];

combination 3

[0, 1;

0, 0];

combination 4

[0, 0;

1, 0];

combination 5

[0, 0;

0, 1];

combination 6

[1, 1;

0, 0];

combination 7

[1, 0;

1, 0];

combination 8

[1, 0;

0, 1];

combination 9

[0, 1;

1, 0];

combination 10

[0, 1;

0, 1];

combination 11

[0, 0;

1, 1];

combination 12

[1, 1;

1, 0];

combination 13

[0, 1;

1, 1];

combination 14

[1, 0;

1, 1];

combination 15

[1, 1;

0, 1];

combination 16

[1, 1;

1, 1];

最佳答案 带有numpy和itertools的单线程解决方案:

[np.reshape(np.array(i), (K, N)) for i in itertools.product([0, 1], repeat = K*N)]

说明:product函数返回其输入的笛卡尔积.例如,product([0,1],[0,1])返回一个迭代器,它包含[0,1]和[0,1]的所有可能的排列.换句话说,从产品迭代器中绘制:

for i, j in product([0, 1], [0, 1]):

实际上相当于运行两个嵌套的for循环:

for i in [0, 1]:

for j in [0, 1]:

上面的for循环已经解决了K,N =(1,0)的特定情况下的问题.继续上述思路,为了生成向量i的所有可能的零/一状态,我们需要从迭代器中提取样本,该迭代器等效于深度为l的嵌套for循环,其中l = len(i).幸运的是,itertools提供了使用repeat关键字参数实现的框架.在OP问题的情况下,这个置换深度应该是K * N,因此在列表理解的每个步骤期间它可以被重新整形为适当大小的numpy数组.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值