如何生成大小为K的0-1矩阵的所有可能组合?
例如,如果我取K = 2且N = 2,我得到以下组合.
combination 1
[0, 0;
0, 0];
combination 2
[1, 0;
0, 0];
combination 3
[0, 1;
0, 0];
combination 4
[0, 0;
1, 0];
combination 5
[0, 0;
0, 1];
combination 6
[1, 1;
0, 0];
combination 7
[1, 0;
1, 0];
combination 8
[1, 0;
0, 1];
combination 9
[0, 1;
1, 0];
combination 10
[0, 1;
0, 1];
combination 11
[0, 0;
1, 1];
combination 12
[1, 1;
1, 0];
combination 13
[0, 1;
1, 1];
combination 14
[1, 0;
1, 1];
combination 15
[1, 1;
0, 1];
combination 16
[1, 1;
1, 1];
最佳答案 带有numpy和itertools的单线程解决方案:
[np.reshape(np.array(i), (K, N)) for i in itertools.product([0, 1], repeat = K*N)]
说明:product函数返回其输入的笛卡尔积.例如,product([0,1],[0,1])返回一个迭代器,它包含[0,1]和[0,1]的所有可能的排列.换句话说,从产品迭代器中绘制:
for i, j in product([0, 1], [0, 1]):
实际上相当于运行两个嵌套的for循环:
for i in [0, 1]:
for j in [0, 1]:
上面的for循环已经解决了K,N =(1,0)的特定情况下的问题.继续上述思路,为了生成向量i的所有可能的零/一状态,我们需要从迭代器中提取样本,该迭代器等效于深度为l的嵌套for循环,其中l = len(i).幸运的是,itertools提供了使用repeat关键字参数实现的框架.在OP问题的情况下,这个置换深度应该是K * N,因此在列表理解的每个步骤期间它可以被重新整形为适当大小的numpy数组.