1.函数式编程
函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。
越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。
上图中语言越往上越高级,抽象程度越高。越往上抽象就逐渐向数学接近。
函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。
函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!
函数式编程的特点:
把计算视为函数而非指令(这样不贴近计算机而是贴进计算)
纯函数式编程: 不需要变量,没有副作用,测试简单。(函数任意执行多少次结果确定)
支持高阶函数,代码简洁
python支持的函数式编程
不是纯函数式编程:允许有变量
支持高阶函数:函数也可以作为变量传入
支持闭包:有了闭包就能返回函数
有限度的支持匿名函数。
函数式编程:
最主要的特征是,函数是第一等公民。
强调将计算过程分解成可复用的函数,典型例子就是map方法和reduce方法组合而成 MapReduce 算法。
只有纯的、没有副作用的函数,才是合格的函数。
2.高阶函数
高阶函数:
变量可以指向函数
函数名其实就是指向函数的变量
高阶函数:能接收函数做参数的函数(因为函数的参数可以接收变量,而变量可以指向函数,所以一个函数可以接收另一个函数作为参数。)
把函数本身赋值给变量:
>>> f = abs
>>> f
结论:函数本身也可以赋值给变量,即:变量可以指向函数。
如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:
>>> f = abs
>>> f(-10)
10
成功!说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同。
函数名也是变量:
那么函数名是什么呢?函数名其实就是指向函数的变量!对于abs()这个函数,完全可以把函数名abs看成变量,它指向一个可以计算绝对值的函数!
如果把abs指向其他对象,会有什么情况发生?
>>> abs = 10
>>> abs(-10)
Traceback (most recent call last):
File "", line 1, in
TypeError: 'int' object is not callable
把abs指向10后,就无法通过abs(-10)调用该函数了!因为abs这个变量已经不指向求绝对值函数而是指向一个整数10!
当然实际代码绝对不能这么写,这里是为了说明函数名abs也是变量,指向绝对值函数,当然也可以指向其他的。要恢复abs函数,请重启Python交互环境。
传入函数参数:
既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。
一个最简单的高阶函数:
def add(x, y, f):
return f(x) + f(y)
当我们调用add(-5, 6, abs)时,参数x,y和f分别接收-5,6和abs,根据函数定义,我们可以推导计算过程为:
x = -5
y = 6
f = abs
f(x) + f(y) ==> abs(-5) + abs(6) ==> 11
return 11
为什么我们要将函数作为参数,不直接内部调用函数?
因为把函数作为参数可以增强代码的复用性,如果在函数内直接调用,相当于只能求平方和,而将平方函数作为参数的话,也可以将开平方,三次方等函数作为参数,增加复用性。
map:
Python内建了map()和reduce()函数。
map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
-- 输入:['adam', 'LISA', 'barT'] 输出:['Adam', 'Lisa', 'Bart'],使用map
def format_name(s):
return s[0].upper() + s[1:].lower()
print map(format_name, ['adam', 'LISA', 'barT'])
再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
比方说对一个序列求和,就可以用reduce实现:
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:
先计算头两个元素:f(1, 3),结果为4;
再把结果和第3个元素计算:f(4, 5),结果为9;
再把结果和第4个元素计算:f(9, 7),结果为16;
再把结果和第5个元素计算:f(16, 9),结果为25;
由于没有更多的元素了,计算结束,返回结果25。
当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
附注:在Python3中,要使用reduce,得从functools中引入,加上from functools import reduce。
filter:
Python内建的filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']
可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。
filter()函数返回的是一个新的list,不改变原list的结构。这个新的list中,如果判断条件成立(true)被判断的那个参数就被添加进来,如果判断条件不成立(false)就不添加。
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
sorted:
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:
list = [36, 5, -12, 9, -21]
keys = [36, 5, 12, 9, 21]
我们再看一个字符串排序的例子:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于’Z’ < ‘a’,结果,大写字母Z会排在小写字母a的前面。
现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
这样,我们给sorted传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
从上述例子可以看出,高阶函数的抽象能力是非常强大的,而且,核心代码可以保持得非常简洁。
小结
sorted()也是一个高阶函数。用sorted()排序的关键在于实现一个映射函数。
3.返回函数
函数作为返回值:
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
一个简单的实例:
def f():
print 'call f()...'
# 定义函数g:
def g():
print 'call g()...'
# 返回函数g:
return g
>>> x = f() # 调用f()
call f()...
>>> x # 变量x是f()返回的函数:
>>> x() # x指向函数,因此可以调用
call g()... # 调用x()就是执行g()函数定义的代码
请编写一个函数calc_prod(lst),它接收一个list,返回一个函数,返回函数可以计算参数的乘积。
# 第一种方法
def calc_prod(lst):
def lazy_prod():
def f(x, y):
return x * y
return reduce(f, lst, 1)
return lazy_prod
f = calc_prod([1, 2, 3, 4])
print f()
# 第二种方法
def calc_prod(lst):
def lazy_prod():
return reduce(lambda x,y:x*y,lst)
return lazy_prod
f = calc_prod([1, 2, 3, 4])
print f()
我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax
但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
当我们调用la
zy_sum()时,返回的并不是求和结果,而是求和函数:
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
.sum at 0x101c6ed90>
调用函数f时,才真正计算求和的结果:
>>> f()
25
在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
f1()和f2()的调用结果互不影响。