enscape使用gpu_Enscape用户简单操作让你的显卡性能提升30%-100%

本文揭示了为何使用英伟达Studio驱动而非Game Ready驱动能提升Enscape等设计软件性能30%,并介绍了Windows 10 2004版的DX12终极版如何通过DXR Tier 1.1技术进一步使RTX显卡性能提升至100%。更新驱动和系统,解锁显卡潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2020年不下1000人咨询小编Enscape的安装和使用问题,其中最多的就是显卡驱动导致的Encape无法启动或者使用卡顿。小编惊人的发现90%用户安装的都是英伟达Game Ready(游戏)驱动程序。每当此时小编都让他们更新系统补丁,下载英伟达Studio(工作室)驱动。很多用户一脸不情愿甚至埋怨:”你这样不负责任和电脑死机网吧网管让重启有什么区别?”  但更新完就:“大神!真香!”。

性能提升30%

当然这并不是小编有多牛,这是英伟达不同显卡驱动对不同使用场景有针对性的进行优化。Game Ready(游戏)驱动程序顾名思义是针对游戏的。Studio(工作室)驱动针对我们的设计类软件都一一进行针对性的测试和优化,如Vray、Enscape、D5、Adobe Substance Painter、 Octane Render、 Unreal Engine等等。选择了正确的驱动程序性能轻而易举提升30%。值得注意的是英伟达部分Studio驱动已经停止对Windows7的支持需要升级Windows10。

Studio驱动获取方式

1.访问英伟达官网,点驱动程序菜单-选所有NVIDA驱动程序。

2.根据你的显卡型号及操作系统选择对应的参数。

3.下载类型Studio驱动程序

4.下载后进行安装。

性能提升100%

微软将于下个月发布Windows 10 2004版,此版带来DX12终极版以及DXR Tier 1.1标准。

DXR Tier 1.1特性:

支持向现有的光追PSO添加额外的渲染器,从而大幅提升动态PSO的效率。

光追支持间接执行(ExecuteIndirect),这样一来GPU执行单元时间轴上的光线数量可以启用自适应算法来调节。

引入内联光追(Inline Raytracing),它可以为光线遍历算法及渲染器调度提供更多的直接控制,如果基于渲染的的光追系统误宰,那它可以提供更简单的选择,或者是提供更多灵活性,因为RayQuery可以被每一步渲染过程调用。

除了DXR光追技术升级,微软在DX12最新版中还会引入网格渲染(mesh shader),这是下一代GPU的几何处理功能,取代当前的输入汇编器、顶点渲染器、船形渲染器、曲面细分、域渲染器、几何渲染器等。引入网格渲染器主要是提高几何渲染管线的灵活性和性能,可以让游戏开发者增加几何细节而不需要牺牲速率的情况下渲染更复杂的场景。

上面的专业知识是不是晦涩难懂?说人话就是新版DXR Tier 1.1,可以不经过CPU处理直接调度GPU进行计算大大提升显卡工作效率。DXR Tier 1.1还可以偷懒,将看不见的位置如屏幕外面、模型背面不进行计算大幅提升计算效率。加上其他新算法可以让你的RTX显卡最高提升一倍性能。当然这一切的前提是你拥有一块GTX 1650以上的英伟达显卡,同学们你们准备好更新没?

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值