importcv2importnumpyimportmatplotlib.pyplot as pltfrom PIL importImage, ImageDraw, ImageFont#用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):if (isinstance(img, numpy.ndarray)): #判断是否为OpenCV图片类型
img =Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw=ImageDraw.Draw(img)
fontText= ImageFont.truetype("font/simhei.ttf", textSize, encoding="utf-8")
draw.text((left, top), text, textColor, font=fontText)returncv2.cvtColor(numpy.asarray(img), cv2.COLOR_RGB2BGR)#读取原灰度图片
src=cv2.imread("test2.bmp")
cv2.imshow("src", src)#将原图片命名为“src”显示出来
src_cn=ImgText_CN(src, "原图像", 5, 5, (255, 0, 0), 20)
cv2.imshow("src_cn", src_cn)#将添加文字的src命名为“src_cn”并显示出来#均值滤波
des = cv2.blur(src, (5,5))
cv2.imshow("des", des)#将均值滤波处理后的src命名为“des”并显示出来
des_cn=ImgText_CN(des, "均值滤波", 5, 5, (255, 0, 0), 20)
cv2.imshow("des_cn", des_cn)#将添加文字的des命名为“des_cn”并显示出来#中值滤波
med = cv2.medianBlur(src, 5)
cv2.imshow("med", med)#将中值滤波处理后的src命名为“med”并显示出来
med_cn=ImgText_CN(med, "中值滤波", 5, 5, (255, 0, 0), 20)
cv2.imshow("med_cn", med_cn)#将添加文字的med命名为“med_cn”并显示出来#高斯滤波
gauss = cv2.GaussianBlur(src,(5,5),0)
cv2.imshow("gauss", gauss)#将高斯滤波处理后的src命名为“gauss”并显示出来
gauss_cn=ImgText_CN(gauss, "高斯滤波", 5, 5, (255, 0, 0), 20)
cv2.imshow("gauss_cn", gauss_cn)#将添加文字的gauss命名为“gauss_cn”并显示出来#高斯边缘检测
gaussedge = cv2.Canny(gauss,0,50)
cv2.imshow("gaussedge", gaussedge)#将边缘检测处理后的gauss命名为“gaussedge”并显示出来
gaussedge_cn=ImgText_CN(gaussedge, "高斯边缘检测", 5, 5, (0, 255, 0), 20)
cv2.imshow("gaussedge_cn", gaussedge_cn)#将添加文字的gaussedge命名为“gaussedge_cn”并显示出来
cv2.waitKey(0)