zju眨眼数据集_目标检测算法SSD之训练自己的数据集

本文详细介绍了如何使用SSD目标检测算法训练自己的数据集,特别是针对zju眨眼数据集。首先,确保安装并配置了SSD和Caffe,然后将数据集转化为VOC2007格式,生成LMDB数据。接着,修改相关脚本以适应新的数据集,包括创建列表和数据文件,更新标签映射,并调整训练脚本以匹配数据集的参数。最后,执行训练以开始模型学习。
摘要由CSDN通过智能技术生成

目标检测算法SSD之训练自己的数据集

prerequesties 预备知识/前提条件

下载和配置了最新SSD代码

git clone https://github.com/weiliu89/caffe ~/work/ssd

cd $_

git checkout ssd

编译caffe

下载必要的模型(包括prototxt和caffemodel);

运行了evaluation和webcam的例子,会提示caffe的import报错。添加pycaffe路径到PYTHONPATH环境变量,或者写一个_init_paths.py来辅助引入都可以(推荐后者)。

准备自己的数据集

做成VOC2007格式的:

JPEGImages/*.png

ImageSets/Main/*.txt

Annotations/*.xml

这3个目录

生成训练用的lmdb数据

我这里数据集名叫traffic_sign,放在/home/chris/data/traffic_sign

1.复制原有脚本文件

cd ~/work/ssd

cp -R data/VOC0712 data/traffic_sign

2.修改data/traffic_sign/create_list.sh

#!/bin/bash

#root_dir=$HOME/data/VOCdevkit/

root_dir=$HOME/data/

sub_dir=ImageSets/Main

bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值