1、pytorch保存模型等相关参数,利用torch.save(),以及读取保存之后的文件
https://www.cnblogs.com/qinduanyinghua/p/9311410.html
本文分为两部分,第一部分讲如何保存模型参数,优化器参数等等,第二部分则讲如何读取。
假设网络为model = Net(), optimizer = optim.Adam(model.parameters(), lr=args.lr), 假设在某个epoch,我们要保存模型参数,优化器参数以及epoch
一、
1. 先建立一个字典,保存三个参数:
state = {‘net':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
2.调用torch.save():
torch.save(state, dir)
注:已存在会覆盖掉注:os.mkdir(dir_checkpoint) 创建已存在的目录时,会报错FileExistsError。但是OSError,IOError均可以检测到https://www.cnblogs.com/beile/p/10789333.html列举了文件的异常类型,其中FileExistsError属于OSError
其中dir表示保存文件的绝对路径+保存文件名,如'/home/qinying/Desktop/modelpara.pth'
二、
当你想恢复某一阶段的训练(或者进行测试)时,那么就可以读取之前保存的网络模型参数等。
checkpoint = torch.load(dir)
model.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
2、model.train 和 model.eval
https://blog.csdn.net/weixin_42018112/article/details/91403816
这两个方法是针对在网络train和eval时采用不同方式的情况,比如Batch Normalization和Dropout。
Batch Normalization
BN的作用主要是对网络中间的每层进行归一化处理,并且使用变换重构(Batch Normalization Transform)保证每层所提取的特征分布不会被破坏。
训练时是针对每个mini-batch的