fasttext 文本分类_fastText(一):从词嵌入到句嵌入

0ffb67efbe53c64bef98cd7729a5ceb1.png

到底什么是fastText?

先说结论,fastText在不同语境中至少有两个含义:

  1. 在文章Bag of Tricks for Efficient Text Classification[1]中,fastText是作者提出的文本分类器的名字。与sub-word无关!也不是新的词嵌入训练模型!是word2vec中CBOW模型的简单变种。
  2. 作为Facebook开源包,fastText是用来训练词嵌入或句嵌入的,其不仅包括1中论文的代码实现,还包括Enriching Word Vectors with Subword Information[2]及FastText.zip: Compressing text classification models[3]两文的代码实现。

本来觉得这些含义区别不重要,直到连我自己都被弄迷糊了。在写这篇解读前,我心中的fastText一直是第三种含义:用sub-word信息加强词嵌入训练,解决OOV(Out-Of-Vocabulary)表征的方法。结果带着这个预先的理解读Bag of Tricks for Efficient Text Classification,越读越迷惑。。。

为理清思路,fastText(一)中我们就先讲讲Bag of Tricks for Efficient Text Classification中的fastText,fastText(二)则围绕Enriching Word Vectors with Subword Information。


Abstract

“本文探索了一种简单有效的文本分类基准(方法)。我们的实验表明,我们的快速文本分类器fastText在准确性方面与深度学习分类器平分秋色,其训练和评估速度(相比深度学习模型更是)要快许多个数量级。我们可以使用标准的多核CPU在不到10分钟的时间内用fastText训练超过10亿个单词,并在一分钟之内将50万个句子在31万2千个类中做分类。”

作者中又出现了托老师,不知道是不是受他影响,这篇文章在表述上也很有word2vec的味道,更不用说模型本身。fastText和word2vec的卖点都是简单高效(快)。

一句话介绍fastText

word2vec的CBOW模型中将中心词替换为类别标签就得到了fastText。

具体到一些小区别:

  • CBOW中词袋的大小由window_size决定,而fastText中就是整个要分类的文本。
  • CBOW实际运行中用Hierarchical softmax,fastText用softmax或Hierarchical softmax,具体试类的数量决定。

这就是一个标配版且可以实际应用的fastText了,我要再强调三点它和CBOW无区别的地方,因为在别的讲该论文的文章中看到了一些错误的理解:

  • CBOW和fastText都是用平均值来预测的。(CBOW不是求和,是求平均)
  • N-gram对于CBOW和fastText都是锦上添花的元素,不是标配。
  • 词向量初始化都是随机的,fastText并没有在word2vec预训练词嵌入的基础上再训练。

对N-gram的理解

如果没有重新读这篇文章,我也会下意识地往character级别想,但是必须要在此强调:这篇文章和character没有任何关系!文章中的n-gram出自Character-level Convolutional Networks for Text Classification[4],是word级别的。与我在word2vec(二)中提到的phrases类似。

在此梳理几个概念:

  • BOW (Bag-Of-Words):给你一个句子,统计每个词在其中出现的次数,这种表征方法就是BOW。
  • CBOW(Continuous BOW):托老师在BOW前加了个C,就是因为word2vec并没有基于词频,而是连续的分布式的表征(continuous distributed representation)。
  • n-gram (or word n-gram):“我写知乎”,bi-gram就是“我写”,“写知”和“知乎”。
  • character-level n-gram:(中文不太好讲word和character的区别),深入到字母级别,把一个词拆成字母串。Enriching Word Vectors with Subword Information中是character-level n-gram,这里不是。

作者的实验证明,引入word n-gram可以提升一些任务的表现,原因是标配版中只用word级别求平均值完全忽略了词序,而n-gram保留了小范围的部分词序,对于文本表征是有意义的,从这个角度也可以判断此处的n-gram应当是词级别而不是character级别的。

这篇文章可以看作是word2vec的一个延伸,并不是fastText出名的原因。

“假装看过代码”

我要坦白:我确实没仔细看过fastText的源码。因此从代码角度来解释n-gram在不同fastText版本中的区别我直接引用评论keep fighting同学的内容,非常感谢!不同于word2vec,fastText源码和论文是相互匹配的,可以交叉验证我们对n-gram的理解。

5129d5d6f07a73a20e6ee5c7411ed523.png

创新性有限的fastText.zip

同word2vec一样,softmax给模型的计算量、内存占用都带来了很大的负担。对fastText而言,随着文本数量和词典规模增大,内存占用会极大地攀升。针对该问题,FastText.zip: Compressing text classification models[5]研究了如何在对模型效果影响不大的情况下节省内存。

按照惯例,我们还是简单翻一下abstract:

“我们考虑生成用于文本分类的紧凑架构的问题,从而使整个模型适配有限的内存。在考虑了受hashing相关文献启发的不同解决方案后,我们提出了一种基于PQ算法(Product Quantization)来存储词嵌入的方法。虽然原始技术会导致准确性下降,但我们将此方法改编为规避量化伪像。虽然原版方法会导致准确性下降,但我们将此方法改进为可以规避quantization artefacts的(我尽力了,但我真的不知道这里怎么翻译,求大神指导)。在几个基准测试上的实验结果表明,我们的方法通常仅需要比fastText少两个数量级的内存,而在准确性方面仅稍差一些。就内存使用率和准确性之间的平衡而言,它比现有技术高出许多。”

如OpenReview所说,这篇文章是用已经存在的模型压缩方法(如PQ算法、用hashing来缩小词典内存占用等),创新性有限。何况ICLR更关注DL模型而不是NLP文本分类部分,因此被拒也可以理解。

a2b850e43e3c4751a4eda1c4a713e8b9.png

参考

  1. ^Bag of Tricks for Efficient Text Classification https://arxiv.org/pdf/1607.01759.pdf
  2. ^Enriching Word Vectors with Subword Information https://arxiv.org/pdf/1607.04606.pdf
  3. ^FastText.zip: Compressing text classification models https://arxiv.org/pdf/1612.03651.pdf
  4. ^Character-level Convolutional Networks for Text Classification https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
  5. ^FastText.zip: Compressing text classification models https://arxiv.org/abs/1612.03651
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
FastText是Facebook开发的一种文本分类算法,它通过将文本分解成n-gram特征来表示文本,并基于这些特征训练模型。PyTorch是一个流行的深度学习框架,可以用于实现FastText文本分类算法。 以下是使用PyTorch实现FastText文本分类的基本步骤: 1. 数据预处理:将文本数据分成训练集和测试集,并进行预处理,如分词、去除停用词、构建词典等。 2. 构建数据集:将预处理后的文本数据转换成PyTorch中的数据集格式,如torchtext中的Dataset。 3. 定义模型:使用PyTorch定义FastText模型,模型包括嵌入层、平均池化层和全连接层。 4. 训练模型:使用训练集训练FastText模型,并在验证集上进行验证调整超参数。 5. 测试模型:使用测试集评估训练好的FastText模型的性能。 以下是一个简单的PyTorch实现FastText文本分类的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torchtext.legacy.data import Field, TabularDataset, BucketIterator # 数据预处理 TEXT = Field(tokenize='spacy', tokenizer_language='en_core_web_sm', include_lengths=True) LABEL = Field(sequential=False, dtype=torch.float) train_data, test_data = TabularDataset.splits( path='data', train='train.csv', test='test.csv', format='csv', fields=[('text', TEXT), ('label', LABEL)] ) TEXT.build_vocab(train_data, max_size=25000, vectors="glove.6B.100d") LABEL.build_vocab(train_data) # 定义模型 class FastText(nn.Module): def __init__(self, vocab_size, embedding_dim, output_dim): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.fc = nn.Linear(embedding_dim, output_dim) def forward(self, x): embedded = self.embedding(x) pooled = embedded.mean(0) output = self.fc(pooled) return output # 训练模型 BATCH_SIZE = 64 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_iterator, test_iterator = BucketIterator.splits( (train_data, test_data), batch_size=BATCH_SIZE, sort_within_batch=True, device=device ) model = FastText(len(TEXT.vocab), 100, 1).to(device) optimizer = optim.Adam(model.parameters()) criterion = nn.BCEWithLogitsLoss().to(device) for epoch in range(10): for batch in train_iterator: text, text_lengths = batch.text labels = batch.label optimizer.zero_grad() output = model(text).squeeze(1) loss = criterion(output, labels) loss.backward() optimizer.step() with torch.no_grad(): total_loss = 0 total_correct = 0 for batch in test_iterator: text, text_lengths = batch.text labels = batch.label output = model(text).squeeze(1) loss = criterion(output, labels) total_loss += loss.item() predictions = torch.round(torch.sigmoid(output)) total_correct += (predictions == labels).sum().item() acc = total_correct / len(test_data) print('Epoch:', epoch+1, 'Test Loss:', total_loss / len(test_iterator), 'Test Acc:', acc) ``` 这个示例代码使用了torchtext库来处理数据集,并定义了一个FastText模型,模型包括一个嵌入层、一个平均池化层和一个全连接层。模型在训练集上训练,并在测试集上进行测试,并输出测试集的损失和准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值