当我们学习完了全等、勾股、相似,平移、对称、旋转,如果还想再加点料的话,不妨看看正方形.
正方形是一种既简单又复杂的图形,其图形本身很基本、简单,因而在此基础上可以作很多复杂的变形与构造,我们所知的几何内容,一个都不缺.本专题以近两年中考题为例,简单了解关于正方形在中考题中的应用.
本文将介绍三个方面的内容:
(1)正方形与对称;
(2)正方形与旋转;
(3)反相似手拉手.
01
正方形与对称
正方形既是轴对称图形,也是中心对称图形,关于对称可以考察对称的基本性质,也可以有关于构造对称,而涉及到计算的,无非就是勾股或者三角函数.且看相关例子:
图形的基本性质

求线段长度——勾股定理


对称的性质——对称点连线被对称轴垂直且平分

对称的性质——对称点连线被对称轴垂直且平分

构造对称——将军饮马问题


构造对称——不一样的将军饮马

02
正方形与旋转
关于旋转,关注点在于①绕哪个点旋转;②是否是特殊角度.对于正方形,可绕其中一顶点旋转,可绕对角线交点旋转,大致如下:
(1)绕顶点旋转的手拉手模型

(2)绕O点的等腰直角共点旋转

看几个关于旋转的简单例子:
旧题重看——正方形手拉手模型


共点旋转——以对角线交点为旋转点

旋转——旋转点在对角线上的旋转


若已知旋转,寻找其中的全等或相似即可,而构造旋转,往往更考验对图形构造及旋转的理解.关于正方形的共点旋转,有如下结论:
在正方形ABCD中,点P是正方形内一点,

若满足∠APD=135°,则有2PA²+PD²=PB².
反之,若2PA²+PD²=PB²,则∠APD=135°.(在旋转章节中有过介绍)
2018烟台中考——旋转的构造


关于正方形的旋转大题也有很多,举一例:
探究正方形的旋转


03
反相似手拉手模型
在上一个例题中不难得出这样一个图形:

若连接两个正方形的对角线,则会有一组旋转型相似,这里其实利用的是等腰直角三角形直角边与斜边的比例关系,可将图形简化如下:

连接起对角线,转化成等腰直角三角形,则还另有结论.
如图,正方形ABCD与正方形CEFG共顶点C,连接CA、CF,取AF中点M.
连接ME、MD,则有:MD=ME,ME⊥ME.

连接MB、MG,则有:MB=MG,MB⊥MG.

在说这个证明之前,我们要说说一个模型:
反相似手拉手模型(苏州学而思徐杰老师取名)
手拉手模型:四线共点、两两相等、夹角相等,即可构成一组旋转型全等,称之为手拉手模型.如图,AB=AC,AD=AE,∠BAC=∠DAE,即可得:△ABD≌△ACE.

手拉手相似:改变全等的条件,即线段由相等变为成比例,AB:AC=AD:AE,∠BAC=∠DAE,即可构成手拉手相似.
可将条件化为:当△ABC和△ADE为直角三角形,且∠BAC=∠DAE,
可得△ABE∽△ACE.

反相似手拉手:将其中一个三角形“反”过来,故称反相似手拉手.


特别地,△ABC和△ADE是等腰直角三角形,则有FC=FE,FC⊥FE.
模型证明
在△ABC中,分别以AB、AC为斜边分别向外侧作等腰直角△ABD和等腰直角△ACE,∠ADB=∠AEC=90°,F为BC边中点,连接DF、EF,求证:DF=EF,DF⊥EF.

法1:构造中位线与斜边中线

法2:还原手拉手

法3:倍长中线

法4:构造三垂直模型

中考题中的反相似手拉手:
动态探究——运动中的反相似手拉手


方法提炼——静止的反相似手拉手观察


