ardl模型stata命令_小白学统计|面板数据分析与Stata应用笔记(二)

62eff371392eaa9b1fcac70bdce51661.png

#文章首发于公众号“如风起”。

原文链接:

小白学统计|面板数据分析与Stata应用笔记(二)​mp.weixin.qq.com
6980a973f08bdaa349c67ddc84035914.png

面板数据分析与Stata应用笔记整理自慕课上浙江大学方红生教授的面板数据分析与Stata应用课程,笔记中部分图片来自课程截图。

笔记内容还参考了陈强教授的《高级计量经济学及Stata应用(第二版)》

短面板数据分析的基本程序

1、模型设定与数据

2、描述性统计与作图

3、模型选择

4、报告计量结果

#以啤酒税将降低交通死亡率的假说为例,数据来自陈强教授的《高级计量经济学及Stata应用(第二版)》中的“traffic.dta”数据集。

第一步 模型设定与数据

为了检验假说,构造一个双向固定效应模型

其中,被解释变量

为交通死亡率,核心解释变量
为啤酒税;另外三个可观测的控制变量:
分别为酒精的消费量、税率和人均个人收入;
为不可观测的个体效应,
为时间效应。

在Stata软件中对数据进行分析,执行如下步骤:

1、导入数据到Stata中

在Stata的“命令窗口”中输入

命令【use"数据集路径traffic.dta"】将“traffic.dta”数据集导入到Stata中,

例如【use"C:Userstraffic.dta"】。

将数据导入Stata后,即可在Stata的“变量窗口”中看到“traffic”数据集中的各个变量的名称及其标签。

dcc67fafc9022752cdfbd26df8a189ab.png
以啤酒税将降低交通死亡率的假说为例,数据来自陈强教授的《高级计量经济学及Stata应用(第二版)》中的“traffic.dta”数据集。

2、查看数据

在Stata的“命令窗口”输入命令【des】查看“traffic”数据集。

3c6a6be276fea3e43e36de2855b821d8.png

从输出结果我们可以看到:“traffic”数据集包含336个观测值,54个变量。此外,我们还可以看到数据集中的变量名称、数据类型以及相关的说明。
通过命令【xtdes】我们可以查看面板数据的特征。

ff0e39727aa688a028993e3113b38f76.png

由结果可知:面板数据的截面数 ,时间数 , ,说明这是一个短面板数据集。

在使用面板数据分析前,我们需要输入命令【xtset state year】,来告诉Stata软件,这是一个以截面变量state为州,时间变量为year的面板数据。

59ed864ef37a73a438d7dee9b2d722fd.png

观察输出结果,由strongly balance可知,这是一个平衡面板数据。

至此,我们可以知道,“traffic”数据集是一个48个州,1982-1988年的平衡面板数据集。

第二步 描述性统计作图

1、描述性统计

使用命令【sum 关键变量】可以得到关键变量的描述性统计表。

在Stata中输入命令【sum fatal beertax spircons unrate perinck】,我们可以得到解释变量与被解释变量的观测值、均值、标准差、最小值和最大值。

4bbfb838f0fd376c1cce28a937686360.png

2、绘制散点图及回归直线在回归之前,我们可以先画出核心变量与别解释变量的散点图及回归直线,来预先判定一下核心变量与被解

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值