neon浮点运算_ARM处理器NEON编程及优化技巧——矩阵乘法的实例

本文介绍了如何使用ARM NEON协处理器进行浮点和定点矩阵乘法运算的优化。讲解了NEON的内存操作、SIMD指令应用,以及通过矩阵乘法实例展示了如何进行NEON优化,包括浮点运算版本和定点算法的实现。通过指令重排等技术,可以在Cortex-A8平台上实现性能翻倍。
摘要由CSDN通过智能技术生成

ARM的NEON协处理器技术是一个64/128-bit的混合SIMD架构,用于加速包括视频编码解码、音频解码编码、3D图像、语音和图像等多媒体和信号处理应用。本文主要介绍如何使用NEON的汇编程序来写SIMD的代码,包括如何开始NEON的开发,如何高效的利用NEON。首先会关注内存操作,即如何变更指令来灵活有效的加载和存储数据。接下来是由于SIMD指令的应用而导致剩下的若干个单元的处理,然后是用一个矩阵乘法的例子来说明用NEON来进行SIMD优化,最后关注如何用NEON来优化各种各样的移位操作,左移或者右移以及双向移位等。本节是一个用NEON优化矩阵乘法的实例。

矩阵

本节将介绍如何用NEON有效的处理一个4x4的矩阵乘法运算,这种类型的运算经常用于3D图形,我们认为这些矩阵在内存里是按照列为主排列的,这是按照OPENGL-ES的通用格式。

矩阵乘法算法

我们首先看一下矩阵乘法的计算方式,计算的展开,用NEON指令来进行子操作过程。

938e786dcbc513ea598a754a787b277d.png

图1. 以列为主的矩阵乘法运算

由于数据是按照列序存储的,因而矩阵乘法就是把第一个矩阵的每一列乘以第二个矩阵的每一行,然后把乘积结果相加。乘累加结果 作为结果矩阵的一个元素。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值