++库 照片风格转换风格_相片AI转换做吉卜力风格,AnimeGAN快速将实景转动漫 |硬核新闻...

a63ef67bdc9fa508fb895fb82c665261.png

日本动画不乏从现实环境取材的风景画面,如京都动画(Kyoto Animation)、吉卜力工作室,或是新海诚製作的动画,均採用大量实景作为作品中的舞台,掀起了圣地巡礼的热潮。而近日,中国就有大学团队研发出一种技术,可以将现实世界拍摄的照片转换为类似动漫的图像,令用家可以透过该技术转换相片,如上述的动画制作者般,将二、三次元「合并」。

ae7c149ee37530ffe6177e03ff3eae1d.png

由武汉大学和湖北工业学院组成的中国研究团队开发的 「AnimeGAN: A Novel Lightweight GAN for Photo Animation」,是一项将现实世界拍摄的照片快速转换为动漫图像的技术。AnimeGan 利用神经风格转换(Neural Style Transfer)和 GAN(生殖对抗网络),配合深度学习的轻量级框架,在考虑线条,纹理,颜色,阴影等情况后,将实景图像快速转换为动漫图像。

ce55ac4a394f3a997758e7a1ecb81878.png
bca8ca69ee2f19f0d9d3cb0fbf9c8e73.png
1d1c868a988a307325baaf428a6f6eb5.png
8a664429bb1c9733c603ca3e035496f9.png

该团队指,AnimeGAN 是基于 CartoonGAN,再进行改进,并製作出一个更加轻量级的生成器架构。为了有效减少生成器的参数数量,AnimeGAN 使用了 8 个连续且相同的IRB(inverted residual blocks),以轻量级的生成器实现高速传输。

67de464ce360f336da1eee321d9dcc47.png

将 AnimeGAN 与 CartoonGAN 和 ComixGAN 进行比较,可以发现 AnimeGAN 可以显著减少参数数量和计算成本,并提高了处理速度。尤其是颜色伪影区域(图中红框),CartoonGAN 生成的动漫图像中通常会存在颜色伪影区域,而 ComixGAN 生成的动漫图像中则会存在过度风格化的区域,令原始照片内容有损,难以辨识目标纹理,但 AnimeGAN 就能解决该些问题。

cde4839e0add9eda888583c2b656d833.png

目前,AnimeGAN 已经开源,数据集和预训练模型均可下载,如果读者们有兴趣体验一下宫崎骏、新海诚、或是京阿尼的风格呈现,不妨一试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值