测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数
据(1)剔除异常值;
另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。为了提高数据的质量,必须对数据进行(2)平滑处理(去
噪声干扰);
(一)剔除异常值。
注:若是有空缺值,或导入Matlab 数据显示为“NaN ”(非数),
需要①忽略整条空缺值数据,或者②填上空缺值。
填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。
一、基本思想:
规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,
就认为它是异常值,从而予以剔除。
二、常用方法:拉依达方法、肖维勒方法、一阶差分法。
注意:这些方法都是假设数据依正态分布为前提的。
1. 拉依达方法(非等置信概率)
如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。 其中,11n i i x x n ==∑为样本均值,12
211()1n x i i S x x n =?? ???=--∑为样本的标准偏差。