matlab拉依达法,Matlab笔记——数据预处理(1)——剔除异常值及平滑处理012

数据预处理是数据分析的关键步骤,包括剔除异常值和数据平滑处理。异常值可能由环境干扰或人为因素导致,常用拉依达方法、肖维勒方法和一阶差分法进行检测和剔除。数据平滑则用于去除‘毛刺和尖峰’,提高数据质量。处理空缺值时,可以选择忽略或使用样本平均值填充。数据预处理的目的是确保后续分析结果的客观性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数

据(1)剔除异常值;

另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。为了提高数据的质量,必须对数据进行(2)平滑处理(去

噪声干扰);

(一)剔除异常值。

注:若是有空缺值,或导入Matlab 数据显示为“NaN ”(非数),

需要①忽略整条空缺值数据,或者②填上空缺值。

填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。

一、基本思想:

规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,

就认为它是异常值,从而予以剔除。

二、常用方法:拉依达方法、肖维勒方法、一阶差分法。

注意:这些方法都是假设数据依正态分布为前提的。

1. 拉依达方法(非等置信概率)

如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。 其中,11n i i x x n ==∑为样本均值,12

211()1n x i i S x x n =?? ???=--∑为样本的标准偏差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值