这里仍然以微博为例,接下来用Python来模拟这些Ajax请求,把我发过的微博爬取下来。
1. 分析请求
打开Ajax的XHR过滤器,然后一直滑动页面以加载新的微博内容。可以看到,会不断有Ajax请求发出。
选定其中一个请求,分析它的参数信息。点击该请求,进入详情页面,如图6-11所示。
图6-11 详情页面
可以发现,这是一个GET类型的请求,请求链接为[https://m.weibo.cn/api/container/getIndex?type=uid&value=2830678474&containerid=1076032830678474&page=2)。请求的参数有4个:type、value、containerid和page。
随后再看看其他请求,可以发现,它们的type、value和containerid始终如一。type始终为uid,value的值就是页面链接中的数字,其实这就是用户的id。另外,还有containerid。可以发现,它就是107603加上用户id。改变的值就是page,很明显这个参数是用来控制分页的,page=1代表第一页,page=2代表第二页,以此类推。
2. 分析响应
随后,观察这个请求的响应内容,如图6-12所示。
图6-12 响应内容
这个内容是JSON格式的,浏览器开发者工具自动做了解析以方便我们查看。可以看到,最关键的两部分信息就是cardlistInfo和cards:前者包含一个比较重要的信息total,观察后可以发现,它其实是微博的总数量,我们可以根据这个数字来估算分页数;后者则是一个列表,它包含10个元素,展开其中一个看一下,如图6-13所示。
图6-13 列表内容
可以发现,这个元素有一个比较重要的字段mblog。展开它,可以发现它包含的正是微博的一些信息,比如attitudes_count(赞数目)、comments_count(评论数目)、reposts_count(转发数目)、created_at(发布时间)、text(微博正文)等,而且它们都是一些格式化的内容。
这样我们请求一个接口,就可以得到10条微博,而且请求时只需要改变page参数即可。
这样的话,我们只需要简单做一个循环,就可以获取所有微博了。
3. 实战演练
这里我们用程序模拟这些Ajax请求,将我的前10页微博全部爬取下来。
首先,定义一个方法来获取每次请求的结果。在请求时,page是一个可变参数,所以我们将它作为方法的参数传递进来,相关代码如下:from urllib.parse import urlencode
import requests
base_url = 'https://m.weibo.cn/api/container/getIndex?'
headers = {
'Host': 'm.weibo.cn',
'Referer': 'https://m.weibo.cn/u/2830678474',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/58.0.3029.110 Safari/537.36',
'X-Requested-With': 'XMLHttpRequest',
}
def get_page(page):
params = {
'type': 'uid',
'value': '2830678474',
'containerid': '1076032830678474',
'page': page
}
url = base_url + urlencode(params)
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.json()
except requests.ConnectionError as e:
print('Error', e.args)
首先,这里定义了base_url来表示请求的URL的前半部分。接下来,构造参数字典,其中type、value和containerid是固定参数,page是可变参数。接下来,调用urlencode()方法将参数转化为URL的GET请求参数,即类似于type=uid&value=2830678474&containerid=1076032830678474&page=2这样的形式。随后,base_url与参数拼合形成一个新的URL。接着,我们用requests请求这个链接,加入headers参数。然后判断响应的状态码,如果是200,则直接调用json()方法将内容解析为JSON返回,否则不返回任何信息。如果出现异常,则捕获并输出其异常信息。
随后,我们需要定义一个解析方法,用来从结果中提取想要的信息,比如这次想保存微博的id、正文、赞数、评论数和转发数这几个内容,那么可以先遍历cards,然后获取mblog中的各个信息,赋值为一个新的字典返回即可:from pyquery import PyQuery as pq
def parse_page(json):
if json:
items = json.get('data').get('cards')
for item in items:
item = item.get('mblog')
weibo = {}
weibo['id'] = item.get('id')
weibo['text'] = pq(item.get('text')).text()
weibo['attitudes'] = item.get('attitudes_count')
weibo['comments'] = item.get('comments_count')
weibo['reposts'] = item.get('reposts_count')
yield weibo
这里我们借助pyquery将正文中的HTML标签去掉。
最后,遍历一下page,一共10页,将提取到的结果打印输出即可:if __name__ == '__main__':
for page in range(1, 11):
json = get_page(page)
results = parse_page(json)
for result in results:
print(result)
另外,我们还可以加一个方法将结果保存到MongoDB数据库:from pymongo import MongoClient
client = MongoClient()
db = client['weibo']
collection = db['weibo']
def save_to_mongo(result):
if collection.insert(result):
print('Saved to Mongo')
这样所有功能就实现完成了。运行程序后,样例输出结果如下:{'id': '4134879836735238', 'text': '惊不惊喜,刺不刺激,意不意外,感不感动', 'attitudes': 3, 'comments': 1,
'reposts': 0}
Saved to Mongo
{'id': '4143853554221385', 'text': '曾经梦想仗剑走天涯,后来过安检给收走了。分享单曲 远走高飞', 'attitudes': 5,
'comments': 1, 'reposts': 0}
Saved to Mongo
查看一下MongoDB,相应的数据也被保存到MongoDB,如图6-14所示。
图6-14 保存结果
这样,我们就顺利通过分析Ajax并编写爬虫爬取下来了微博列表,最后,给出本节的代码地址:https://github.com/Python3WebSpider/WeiboList。
本节的目的是为了演示Ajax的模拟请求过程,爬取的结果不是重点。该程序仍有很多可以完善的地方,如页码的动态计算、微博查看全文等,若感兴趣,可以尝试一下。
通过这个实例,我们主要学会了怎样去分析Ajax请求,怎样用程序来模拟抓取Ajax请求。了解了抓取原理之后,下一节的Ajax实战演练会更加得心应手。
众多python培训视频,尽在python学习网,欢迎在线学习!
本文转自:https://cuiqingcai.com/5609.html