python standardprint_标准误(Standard Error)

本文深入探讨了标准误的概念,它是衡量样本均值与总体均值差距的统计量。标准误越小,样本均值与总体均值的差距越小。通过对比标准误与标准差,阐述了两者在数据分布和预测准确性上的差异。同时,文章通过实例和蒙特卡洛模拟展示了标准误的计算和应用,并强调了样本量对标准误的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.标准误概念

标准误是数据统计的重点概念,且难以理解。百度上文章缺乏详细描述的文章。所以写下此文让读者能够彻彻底底了解标准误概念。

标准误全称:样本均值的标准误(Standard Error for the Sample Mean),顾名思义,标准误是用于衡量样本均值和总体均值的差距。

2.标准误意义:

用于衡量样本均值和总体均值的差距有多大?

标准误越小----样本均值和总体均值差距越小

标准误越大----样本均值和总体均值差距越大

标准误用于预测样本数据准确性 ,标准误越小,样本均值和总体均值差距越小,样本数据越能代表总体数据。

3.标准误与标准差区别:

对一个总体多次抽样,每次样本大小都为n,那么每个样本都有自己的平均值,这些平均值的标准差叫做标准误。

标准差是单次抽样得到的,用单次抽样得到的标准差可以估计多次抽样才能得到的标准误差

标准差表示数据离散程度:

标准差越大,分布越广,集中程度越差,均值代表性越差

标准差越小,分布集中在平均值附近,均值代表性更好

标准差与标准误不同应用范围:

标准差:(图左)在正负两个标准差(95%概率下),Jack消耗时间在68-132秒之间。

标准误:(图右)在正负两个标准误,Jack消耗平均时间大约在95-105秒之间。

4.标准误计算例子</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值