阶跃函数卷积自己_详细推导卷积算法

本文详细介绍了卷积运算,从测量飞船的实例出发,阐述卷积的基本概念,包括卷积核翻转、不翻转的情况,并探讨了卷积运算的特点,如稀疏交互和参数共享。接着讨论了卷积的变体,如多通道卷积、调整卷积步幅和填充方式。最后,讲解了卷积求导,为理解神经网络中的反向传播奠定基础。
摘要由CSDN通过智能技术生成

4e79efd339816563c2cbf9cc86231ff7.png

本文的主要思路如下:

2458c92b388b0ddda32cbeab574ee410.png

1 从测量飞船的例子开始

假设

表示第
时刻测量到的宇宙飞船位置。由于信号存在干扰,我们取该时刻的前
次测量结果的期望作为该次测量的最终结果。我们用
表示这
次测量里的一个时刻,我们假设
时刻对应的权重为
,则
越接近
,它应越重要。这里所有的值都是标量。求
时刻前
次测量的期望

32808df137c444155659a9cae50a0d20.png

则,期望求解如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值