三、Python在机器学习中的应用
PyCharm是一款非常优秀的Python集成开发环境
(1)Scikit-learn是目前最流行的Python语言机器学习工具包,基于NumPy和SciPy等数值计算库提供了高效的算法实现,涵盖了数据预处理、分类、回归、聚类、降维、模型选择等几乎所有主流机器学习算法,提供了一致的调用接口,简便易用,样例丰富,文档齐全
算法定义svm=SVC(kernel=’rbf’,gamma=0.10,C=10.0)
训练svm.fit(x_train,y_train)
预测svm.predict(x_test)
(2)TensorFlow是市场占有率和用户数都遥遥领先的深度学习框架,可基于数据流图(data flow graphs)在CPU或GPU上的进行高性能的分布数值计算。2019年发布的TensorFlow2.0,简化了深度学习API,利用Keras作为其高级深度学习API,并通过急切执行(Eager Execution)更好地与Python集成,极大地拓展了Python语言进行机器学习的可能。无论是初学者还是资深人士,均可借助其简洁高效地创建深度学习模型、完成深度学习任务。使用Keras创建神经网络进行图像分类的基本过程如下:
创建神经网络model=models.Sequential()
model.add(…)
…
训练神经网络model.compile(…)
model.fit(train_images,train_labels)
评估或预测model.evaluate(test_images,test_labels)
model.predict(test_images)