自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Loong Cheng的博客

尽我所能,打破大公司技术壁垒,资源一切都免费。

  • 博客(300)
  • 资源 (14)
  • 收藏
  • 关注

原创 win10 MSVS2019 tensorrt

这篇文章的前提是你已经安装好了cuda和cudnn。并且没有问题了。不会弄得看我的文章。然后开始配置trt内容。1 相关参数cuda cuda_11.1.0_456.43_win10.execudnn cudnn-11.1-windows-x64-v8.0.4.30trtTensorRT-7.2.1.6.Windows10.x86_64.cuda-11.1.cudnn8.0.zipMSVS 2019 社区版2 添加环境变量C:\TensorRT-7.2.1.6....

2020-12-12 14:13:32 51

原创 win10+vistual studio 2019+ cuda +opencv+cpp/c环境

1 安装vistual studio必须先安装他,然后选择桌面开发程序。目前最新的是2019,我用的也是2018。如果用vscode开发,随时安装都可以。主要是配置环境变量。最后面说这个。2 安装显卡驱动显卡对应cuda版本信息https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html去官方下载安装就行了·1https://www.nvidia.cn/Download/index.aspx?lang

2020-11-15 22:30:51 50

原创 Typora偏好设置

突然发现md文件比word-office好用多了,太多了,特别是在window和linux互相转移文件的时候,不会改变格式。我目前用的是0.9.77bete,偏好设置如下:通用 -> 启动选项外观 -> 主题自带的不好看 whitey很不错。编辑器 -> 默认缩进图像这个很重要,网上拷贝下来的文章,不用一个个保存图片了下面就是为了看着舒服...

2019-11-30 13:43:53 2117

原创 ubuntu18.04 配置vscode的C++/C环境+opencv

目录一、安装vscode二、安装C/C++插件三、配置调试和编译文件3.1 tasks.json文件----生成out文件3.2 launch.json文件----执行out文件四 执行五 OPENCV编译环境5.1 配置依赖5.2 配置opencv5.2 配置vscode环境5.2.1 c_cpp_properties.json5.2.2 task...

2019-06-14 22:49:44 6597 7

原创 笔记本安装Ubuntu18.04各种坑及相关软件

目录1 安装系统1.1 修改参数1.2 分盘1.3 重启电脑2 配置电脑2.1 设置软件源2.2 设置附加2.3 检测你的NVIDIA图形卡和推荐的驱动程序的模型3 降级gCC4 cuda安装4.1 NVIDIA与cuda对照4.2 deb 版安装 cuda9.0 nvdia3904.2.1 下载4.2.2 配置环境4.3 run ...

2019-05-07 23:44:54 6261 6

原创 如何录制大黄蜂课堂播放的教学视频

这个方法只是为了做笔记方便,不是为了盗版使用。代码有个问题,就是说,录制时间太长,会内存溢出。所以我建议视频播放速度设置为2倍。然后在录好的视频上截图,做笔记。还有就是没办法录制声音,我在学习录制声音的模块。后期会加上。目前版本为5.0.4。在使用大黄蜂播放器时候,想要截取视频中图像作为笔记根本做不到。所以为了解决这个问题。我想到一个办法。代码用py实现的。代码不是我的,是我抄的。不过很好用。全屏后代码...

2021-01-10 10:41:05 104 3

原创 AttributeError: module ‘tensorflow‘ has no attribute ‘compat‘ when importing tensorflow

**AttributeError: module ‘tensorflow’ has no attribute ‘compat’ when importing tensorflow**出现这个问题原因是你装过了两个大版本的tf。比如说1.x跨越到2.x,或者1.11跨越到1.14以上。出现报错原因是tf的辅助包出问题了。比如tensorflow-estimator或者tensorflow-datasets,或者hub之类的。把他卸了,重新执行下pip install tensorflow==1.15.

2020-12-19 14:03:17 17 1

原创 tensorflow+keras混搭

import tensorflow.keras as kimport tensorflow as tfimport numpy as npx = np.ones([8,224,224,3]).astype(np.float)data = tf.placeholder(tf.float32,[None,224,224,3])net = k.layers.Conv2D(64,[3,3])(data)y_ = tf.layers.batch_normalization(net, name='qsd'.

2020-10-30 18:42:13 83

原创 伪编程语言表述

首先看个例子吧,这是来之thinet的论文。语法 说明 Algorithm 描述算法的作用、解释算法应用、标题。 Input 算法的输入变量 Output 输出变量 这三个都各占一行。语法 说明 while 条件 do code.. end while 循环 for 条件 do code。。 end for 循环 A<-B; A...

2020-10-05 18:19:51 97

原创 tensorflow 实现全局平均池化

有两种方法一方法,这里用的tf.nn。可以用tf.layers代替。 p05 = tf.nn.avg_pool2d(conv10,ksize=[1,conv10.get_shape().as_list()[1],conv10.get_shape().as_list()[1],1],strides=[1,1,1,1],padding=VALID',name='GAP')二方法 p05 = tf.reduce_mean(conv10, [1, 2], keep_dims=True, name

2020-09-18 22:50:29 572

原创 一种新的剪枝方法

现在是2020年9月14日。不知道别人有没有写过相关的论文。下面开始正文。我先拿一个训练好的模型中conv层的w来说。下图是第一层的conv的w。每条线为一个维度的w。HDFview这个软件一次最多能画10组数据。这里就看这些吧。观察图像你会发现一个规律,某一值附近,大部分曲线呈现一个走势,只有少部分相反,或者比较慢的走势。我在上图中画上了竖线,你会发现这个现象。那么问题来了,能不能通过统计这总趋势来决定哪个feature的w重要呢?应该可以,通过这种方法来剪枝,更具有意义。用一句话

2020-09-14 23:56:53 47

原创 分析医院用的人脸识别系统

这是写给小白或者刚入门人脸识别的。最近找工作上火,然后引起内分泌失调,去医院住院处呆了10天。辽阳市中心医院,有空可以去感受下他们用的人脸识别系统。背景医院的住院处是个人流量比较大的地方,今天在这住,明天可能就出院了。一般患者+一个陪护。在全球疫情未好转的大环境下,住院处门禁也用上了人脸识别。模型需求分析人脸识别系统需求分析:需要实时识别 需要实时在线更新--动态更新数据 模型抗噪音能力强 可以有,口罩识别。几乎所有场所都需要戴口罩,这个功能应该有,但是我住的医院没有。最后分析

2020-09-14 18:46:35 170

原创 tensorflow历史版本离线版下载方法

版本链接gpu版https://pypi.org/project/tensorflow-gpu/1.15.2/#filescpu版https://pypi.org/project/tensorflow/1.15.2/#files链接说明https://pypi.org/project/ 主页 tensorflow-gpu/或者tensorflow/是版本, /1.15.2/是版本号, /#files下载链接。如果只想跳到相关页面,去掉这个/#files.获取相关的版本号..

2020-08-29 13:03:10 602

原创 发现tf在压缩模型方面,有些是做不到的--可以实现

发现tf在压缩模型方面,有些是做不到的。比如修改梯度更新内容。tf的计算图一点创建就无法修改,但是现在的一些论文中,有对梯队修改,来增加训练速度的方法。我看到torch写的代码,我发现tf做不到。我想未来tf也不会修改,因为上面提到的了,图是无法修改的。未来一定会学习pytorch或者torch,然后模型转为pb格式,因为tf-serving在布置模型方面有太大的优势。...

2020-08-22 10:20:17 123

原创 关于tensorflow量化

tensorflow模型量化不并不提速,并且可能会降低速度。他只能压缩模型。为什么不能提速?官方给的解释是,巴拉巴拉巴拉。。忘了。量化有两种方式,tflite和pb两种保存方式。tflite是量化+轻量化;pb得格式是只量化(这种方法可能只在linux跑模型,win会报错。我是tf-1.15.0版本,win不行。)。所以就是说,别去尝试手动自己写代码去量化了,就用官方得代码,压缩下模型就得了。...

2020-08-15 15:55:20 55

原创 剪枝算法汇总

先说废话,目的剪枝,就是剪掉w和b种的不重要的部分,留下重要的。一般流程为,训练好的模型--剪枝--retrain--剪枝。剪枝,有slim和pruning之分。怎么分呢?我就不说了。说下剪枝分为静态的和动态的。他们的区别是是否边训练边剪枝。剪枝的关键在于如何去设置阈值,来剪掉不重要的。下面讲讲方法,01 简单粗暴的剪枝直接剪枝,去掉w和b中百分之多少的值。我查论文发现几种方法:只保留正值部分 保留正值和负值中的百分之多少 保留正值中的百分之多少 去掉极大极小值

2020-08-10 17:10:31 470

原创 不同深度学习框架模型转化

微软提供的mmdnn这个框架不太好,他只能针对某些现有的框架实现转化,自己写的,好像不能转。我在转化mxnet框架到ir中间框架时,不停的报错。onnx这个框架不错,可以把模型转化为中间文件.onnx,然后再转成目标框架。需要注意两点,1.2.1和1.4.1比1.7.1好用。onnx-tf选择1.2.1版本为好。...

2020-08-04 21:21:55 127 1

原创 奇思妙想

现在看视频,听广播都有广告,视乎特别烦。能不能做到让用户喜欢广告呢?并且非常愿意听广告?当然可以做到。1用某种方式,然后用户可以通过使用软件时常或者听广告时常,来获得积分,然后,让用户用积分兑换礼品,混着现金。前段时间喜马拉雅极速版可以用在线时间换取钱,具体内容可以看这里了解.我感觉可以给用户更大利润,来吸引用户使用和商业广告。并且提供积分+RMB兑换会员的机制.2或者采用下面的机制。(总金额+活跃度)/参与人数=每人获得。这种方式更具有吸引力。这个算法不会分配不给给平台

2020-07-29 11:57:37 77

原创 戴口罩人脸人别

戴口罩人脸人别,其实还是类内分类问题。人脸对齐出来人脸,然后开始做分类任务。这个把人脸对齐出来后的人脸进行切割。比如说原图对齐后然后对这个图片进行处理。把他切成口罩+眼睛的形式。把这两部分同时喂入网络。眼睛的计算的loss+口罩计算的loss合起来事总loss。但是,眼睛部分占了总loss的0.8.和没有戴口罩的这个人的人脸喂入相同的特征网络。计算loss。center+softmax。让这两个人脸接近。没有考虑小的人脸,网络没有选择宽网络,而是选的mini-xepti.

2020-07-28 21:49:09 99

原创 如何在自己的model中,加入签名。

这个方法不是最好的。但是如果有人想用他用你的模型,这个可以作为证据。具体方法:找到一个层,这个层的参数不能太多(计算不影响速度),然后加上日期,比如今天20200727,然后在剪掉。这个日期也可以用公式重新编码下,以免别人能察觉出来。有的时候,你需要把自己的模型给你应聘的公司看,但是不想他们使用。如果使用了。你可以通过这个来说事。...

2020-07-27 22:48:54 67

原创 tensorflow与keras对应关系

https://docs.floydhub.com/guides/environments/keras <= 2.3.1的版本,没有model.weight_load函数

2020-07-21 11:16:19 472

原创 深度学习-人脸 笔试题

1 解释1x1 卷积的作用?2 写出激活函数switch relu及变形 tanh sigmoid maxout公式?3 再考虑算计问题上,如何选择以上面激活函数?4 简述密集网络和树形网络思想?5 列举5个人脸识别中应用的loss并说明考虑的角度?6 写出并解释l softmax公司参数含义?7 解释incptionv1到 v4模型有话方法?8 如何处理过拟合?9 训练和测试模型表现良好,验证结果不好,怎么处理?10 简述剪枝思想,并列举一种?11 解释mns?12 写出三种替换f.

2020-07-20 21:19:26 112

原创 稀疏训练

什么是稀疏训练,看下面的流程。说白了,就是删除cnn中weight,某个面中不要的值。如何取这个阈值呢?一般都是方差作为标准。也有把负值设为0的。这里感觉像什么?激活函数吧。也是剪枝的一种,不同于通道剪枝,会加速运算。只是提高准确率性。参考http://www.xjishu.com/zhuanli/55/201710473955.html...

2020-07-15 16:21:13 677

原创 某些激活函数真的对模型有作用吗?

激活函数作用是什么?给w+b一个约束。要么是排除赋值(relu),要么是缩放到一个范围(tanh等),或者更加极端(1,0)。下面是一个训练好(flowers acc 74.6%)的vgg16中某一层的w中的一个feature值。可以看到其中正负都有。不能排除其中负的部分对模型的准确率没有影响。假设,如果他有作用,那么可能是在纠正太“正”(过拟合)的作用。才会有relu的变形,prelu。上图为w上图为b我认为负值也很重要,选择激活函数,应该想到。我这么理解的,可能不对。...

2020-07-08 12:50:46 119

原创 tfs配置环境

tfs有两种方法布置,一个是通过docker,一个bazel。我用的是docker。比较老的博文说的是把bazel布置在docker中,或者布置ubuntu中。我这里说的是win下布置。docker布置1.去官网注册,然后下载。然后一直下一步就行。点开settings,修改配置源,如下图。{ "registry-mirrors": [ "https://alzgoonw.mirror.aliyuncs.com" ]}输入下面代码验证docker run h.

2020-07-03 12:53:12 134

原创 tensorflow-serving布置facenet心得

这个的东西困扰我很久,终于弄成了。不知道我做的是不是太繁琐,如果有人做的更简单,希望指出,谢谢。docker中,做了两个容器,一个放的mtcnn,一个放的facent。他们并不是多模型布置的。mtcnn其中包括:pnet,rnet和onet,这三个是多模型布置。客户端通过调用mtcnn,得到返回值,然后传给facenet。这里有个问题。numpy数组的事,需要转换。不能直接穿numpy的数组给tf-serving。报错一般有两个方面原因,路径错误或者就是传入的值类型不对。还有就是一个问题,绑

2020-07-02 10:07:08 200 3

原创 把slim代码改成layers和layers的层定义

把slim代码改成layers代码,为什么不改成keras代码?因为需要该很多东西,工作量比layers的方法大。layers的低层实现是keras。快速修改的方法。首先,找到模型的入口,我的如下图。然后,顺着再找出所有的with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer):.

2020-06-21 08:40:00 109

原创 tensorflow量化称pb文件后,win系统运行报错问题

tensorflow 1.14.0 把vgg模型量化成int8后,在win系统跑,报错如下Evaluating......Traceback (most recent call last): File "C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow_core\python\client\session.py", line 1365, in _do_call return fn(*args)..

2020-06-09 12:35:07 122

原创 关于tensorflow模型保存几种格式

ckpt常规模型,模型结构,数据,运算图分开保存。常用在训练阶段使用。h5keras前端保存的模型格式,有两种,纯数据和数据+网络结构,可以被tf调用。可以用软件查看内部。pb用于lite端/server端,包括结构+数据,不可以修改内部,也就是为什么叫做凝固图了。pbtxtpb的扩展格式,可以被修改内容,用记事本就可以修改。tflite一种实验的数据格式,可以用轻量级的`tflite_runtime`包来调用,方便用于服务器部署。作为学习 比较推荐h5,部署推.

2020-05-18 13:38:00 542

原创 评价游戏:战歌竞技场

以下内容为2020/05/16 12:00:00以前这个游戏我从测试阶段就开始玩。现在进入了正式阶段。有幸,拿到了6元游戏注册红包。不过游戏品质和游戏内容,真的不敢恭维。完全是个借鉴+半成品。1 从整体来说,很多东西借鉴了多多自走棋(以下称多多)的内容。种族关系和职业关系有很多事借鉴多多,比如德鲁伊升星,精灵,海族的关系。还有相同的种族。模型和技能也有借鉴多多,不过做出来的效果没有多多的好,比较烂。2 种族/职业关系凑不够数你在游戏的时候,会发现很多种族和职业羁绊不能触发,因为凑不够数。

2020-05-16 10:45:38 281

原创 深度学习中的缩写

真的好烦缩写,特别容易弄混,我在毕业答辩时候,老师也说,比用缩写,特烦。下图来源于:2019,苏州科技大学,康一帅,基于卷积神经网络的图像识别算法研究[D]粗略看一下,发现其40页,59页是空白页。可能毕业太着急了。。。...

2020-05-09 09:57:34 459

原创 关于模型压缩/优化系统学习的内容

本文主要介绍关于模型压缩/优化系统学习的内容,让你找论文学习有方向。并不提供详尽内容域代码。1 压缩加速系统1.1 卷积核张量的低秩分解1.1.1 迭代法1.1.2 SVD1.2 网络剪枝1.3 网络参数量化1.3.1 线性量化1.3.1.1 对称1.3.1.2 不对称1.3.1.3 极限二值化1.3.2 非线性量化1.3.2.1 对数1.3.2...

2020-04-11 10:57:50 107

原创 4d矩阵与2d矩阵相互映射关系

4d矩阵与2d矩阵相互映射关系,svd降维时候用到。import cupy as cpd4 = cp.linspace(1, 1000, 1000).reshape(10, 4, 5, 5) # [N,C,d,d]def four_2_two(d4): N, C, d, _ = d4.shape d2 = cp.empty([d * N, d * C]) ...

2020-04-07 23:22:32 207

原创 keras的plot_model错误三连

from keras.layers import Input, Conv2D, MaxPool2D, Flatten, Dense, Activationfrom keras import regularizersfrom keras.models import Modelimport keras.activations as activationfrom keras.utils imp...

2020-04-01 16:36:58 105

原创 模型加速

最近在学习加速方法。总结大概分3类数学方法 权重优化 模型结构方法1和方法2都是对训练好的模型,进行优化处理。方法1一般不会改变模型的精度,方法2会对精度有影响,并且只能针对冗余权重。而第三种方法,一般都是修改模型,也就是训练时候,就是用优化的模型结构。说的再多,他们之间也有相通的比如可以把权重矩阵分解理解成数学方法。具体内溶,还在总结整理代码中。...

2020-03-31 14:33:43 117

原创 Docker考点

https://blog.csdn.net/zsh2050/article/details/83005085虚拟化技术无疑是云计算的核心技术,而容器虚拟化方案,更是充分利用了操作系统已有的机制和特性,可以实现轻量级的虚拟化。Docker无疑是其中的佼佼者。一.Docker的核心概念1.镜像(Image)可以将它理解为一个面向Docker引擎的只读模板,包含了文件系统。2.容...

2020-03-28 11:22:24 154

原创 关于Densenet的改进方法

改进Densenet是一个非常棒的网络结构,但是特别耗费显卡。然后作者给出了解决方法黄高博士及刘壮取得联系两位作者对 DenseNet 的详细介绍及常见疑问解答DenseNet 特别耗费显存?不少人跟我们反映过 DenseNet 在训练时对内存消耗非常厉害。这个问题其实是算法实现不优带来的。当前的深度学习框架对 DenseNet 的密集连接没有很好的支持,我们只能借助于...

2020-03-17 13:58:21 1525 6

原创 keras 自定义:激活函数,层,损失函数,正则化器,初始化器,学习率

自定义激活函数import osfrom keras import backend as Kfrom keras.layers import Activation,Conv2Dfrom keras.utils.generic_utils import get_custom_objectsos.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"def ...

2020-03-05 17:15:11 3785 5

原创 shell : docker tensorflow

https://tf.wiki/zh/appendix/docker.html1 使用 Docker 部署 TensorFlow 环境提示本部分面向没有 Docker 经验的读者。对于已熟悉 Docker 的读者,可直接参考 TensorFlow 官方文档 进行部署。Docker 是轻量级的容器(Container)环境,通过将程序放在虚拟的 “容器” 或者说 “保护层” 中运...

2020-02-24 21:38:01 84

原创 np.allclose

比较两个数组的每个元素是否相同np.allclose(a,b)返回bool类型

2020-02-22 21:16:06 138

Squeeze-and-Excitation Networks

Squeeze-and-Excitation Networks的论文,不算比较经典的网络。需要学习,是对其他网络的改进版

2020-04-05

python/c++ dlib doc

dlib开发的doc,网上也能找到,这个是最新的。欢迎大家来下载。

2018-12-03

动态网络社区发现算法研究

【强烈推荐,非常好的论文】如今人们生活在一个网络无处不在的时代,例如,交通运输网、移动通信网、互联网、在线社交网等,这些网络结构复杂,人们无法直接从中提取有用信息。社区发现作为一种重要的网络分析技术,能够挖掘出网络中具有某些共性的节点集合,有助于人们更加清楚的认识网络,吸引了很多专家的注意。随着现实网络和人们需求的变化,社区发现研究的侧重点也在不断变化。最初研究静态小规模网络的社区发现算法,随后由于网络规模的增大,算法的可伸缩性受到限制,人们开始研究如何提高算法效率。鉴于网络动态变化的本质特征以及人们对社区结构准确性和实时性的要求,动态网络社区发现开始受到关注。 本文首先介绍了社区发现相关技术,分析了经典的静态和动态社区发现算法及其优缺点,例如,GN算法、KL算法、CMP算法、GraphScope算法、FaceNet算法等。然后深入分析了基于贪婪思想的SHRINK-G算法,该算法不需要用户提供参数并且对每个节点只访问一次,算法效率较高,但存在的问题是对社区边界点的处理并不合理,容易使其成为无社区归属的节点,为此我们改进SHRINK-G算法,提出了 MSHRINK-G算法。随后基于MSHRINK-G算法研究了动态网络中的社区发现问题,并提出了基于增量处理的DMSHRINK-G算法。通过在LFR合成数据集和不同规模的真实数据集上的实验结果表明,MSHRINK-G算法准确性得到较大提高,DMSHRINK-G算法能够准确处理网络变化且算法效率较高。

2018-11-08

python面向对象 自己手写的

自己手写的,包括很多内容,还行把自己手写的,

2018-09-30

百度区域块白皮书--图腾

百度区域块白皮书--图腾

2018-09-26

暂态混沌神经网络模型改进研究及其应用

很好的论文,即可普,又有完整的实现过程,非常推荐看看.有非常大的帮助

2018-09-26

FaceBoxes: A CPU Real-time Face Detector with High Accuracy

FaceBoxes: A CPU Real-time Face Detector with High Accuracy 的论文 值得一看

2018-09-26

mahle屏幕保护

超酷超拽的屏幕保护,介绍发动机的组装和工作原理。办公室装叉的理器。

2018-05-03

游戏开发中的人工智能研究与应用

游戏开发中的人工智能研究与应用 学位论文 质量还不错

2018-04-29

基础html笔记

这是黑马程序员讲的asp。net中提到的html基础。写成笔记用于爬虫,基本够用了。但是js之类的还要自己去找资源。

2018-04-29

Touchdevelop

这是一本Touchdevelop的教程,针对windowphone开发平台。虽然这个平台已经没了,但是可以看看。感觉挺好玩的。从来没有尝试过web开发移动应用程序吧?

2018-04-29

关于办公信息系统智能化的研究

关于办公信息系统智能化的研究关于办公信息系统智能化的研究关于办公信息系统智能化的研究关于办公信息系统智能化的研究

2018-03-19

基于人工智能算法的QR码识别系统应用与比较

--------------仅作学习,传播idea,愿论文无限制---------------- QR 二维码的识别技术是数字图像处理领域研究的一个热门课题。随着物联网的不断发展, QR 二维码凭借其强大的信息存储能力、方便快捷的识读优点、安全可靠的编码技术,已经逐渐地应用于各个行业领域。 同时,二维码识读设备也朝着智能化、微型化和网络化的趋势发展。 因此, 对基于嵌入式图像采集处理的 QR 码识别系统的研究具有重大而深远的意义。本文首先对国内外 QR 二维码识别技术进行了深入研究和对比,主要包括 QR 码的原理、结构特点、编码规则以及重点研究数字图像处理算法在 QR 二维码上的应用。结合 QR 二维码自身结构特征,通过数字图像处理算法对 QR 码进行灰度化处理、滤噪、二值化、图像定位、几何校正、图像分割等。在不同条件下,分析比较各算法的处理效果、算法鲁棒性以及执行速率。提出一种改进型自适应亮度算法对 QR 二维码进行预处理,经过实验证明,该算法效果良好。

2018-03-19

嵌入式Linux操作系统的研究

在 Linux内核以及 Linux应用环境的研究基础上 ,采用操作系统模块分解改进的方法 ,实现在不同系统芯 片 ( sy stem on chip, So C)硬件平台上可运行的嵌入式 Linux操作系统 .分解改进的模块包括: 启动代码的平台相关 性移植 ; 内存管理模块无内存管理单元 ( m emor y ma nag ement unit, M M U )支持的设计 ;进程调度模块的实时性改 进 ; 文件系统小型化设计 .这些模块可以根据需求进行组合来满足不同的开发板和应用 .此外 ,对嵌入式 Linux开 发方式做了总结 .完成了在两个不同体系结构硬件平台上嵌入式 Linux的原型系统 .测试数据表明 ,改进后的 Linux 可以满足嵌入式运行环境的需求 ,并且可以稳定地提供一定功能的应用服务 .

2017-09-13

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除