merge
merge 函数通过一个或多个键将数据集的行连接起来。
场景:针对同一个主键存在的两张包含不同特征的表,通过主键的链接,将两张表进行合并。合并之后,两张表的行数不增加,列数是两张表的列数之和。
def merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None):
参数
描述
how
数据融合的方法,从在不重合的键,方式(inner、outer、left、right)
on
用来对齐的列名,一定要保证左表和右表存在相同的列名。
left_on
左表对齐的列,可以是列名。也可以是DataFrame同长度的arrays
right_on
右表对齐的列,可以是列名。
left_index
将左表的index用作连接键
right_index
将右表的index用作连接键
suffixes
左右对象中存在重名列,结果区分的方式,后缀名。
copy
默认:True。将数据复制到数据结构中,设置为False提高性能。
特性示例(1)
默认:以重叠的列名当作连接键
df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'three', 'three'],
'data2': np.arange(3)})
df3 = pd.merge(df1, df2)
print(df1)
print(df2)
print(df3)
key data1
0 one 0
1 two 1
2 two 2
key data2
0 one 0
1 three 1
2 three 2
key data1 data2
0 one 0 0
特性示例(2)
默认:做inner连接,取key的交集
连接方式还有left right outer
df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'three', 'three'],
'data2': np.arange(3)})
df3 = pd.merge(df1, df2)
df4 = pd.merge(df1, df2, how='left')
print(df3)
print(df4)
key data1 data2
0 one 0 0
key data1 data2
0 one 0 0.0
1 two 1 NaN
2 two 2 NaN
特性示例(3)
多键连接时将连接键做成列表传入。
on默认是两者同时存在的列
df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
'value': ['a', 'b', 'c'],
'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'two', 'three'],
'value': ['a', 'c', 'c'],
'data2': np.arange(3)})
df5 = pd.merge(df1, df2)
df6 = pd.merge(df1, df2, on=['key', 'value'], how='outer')
print(df5)
print(df6)
key value data1 data2
0 one a 0 0
1 two c 2 1
key value data1 data2
0 one a 0.0 0.0
1 two b 1.0 NaN
2 two c 2.0 1.0
3 three c NaN 2.0
特性示例(4)
两个对象的列名不同,需要分别制定。
df7 = pd.merge(df1, df2, left_on=['key1','data1'], right_on=['key2','data2'], how='outer')
print(df7)
key1 value_x data1 key2 value_y data2
0 one a 0.0 one a 0.0
1 two b 1.0 two c 1.0
2 two c 2.0 NaN NaN NaN
3 NaN NaN NaN three c 2.0
join
join方法将两个DataFrame中不同的列索引合并成为一个DataFrame
参数的意义与merge基本相同,只是join方法默认左外连接how=left
def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
sort=False):
示例
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A1'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
df2 = pd.DataFrame({'C': ['C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2']},
index=['K0', 'K1', 'K3'])
df3 = df1.join(df2)
df4 = df1.join(df2, how='outer')
df5 = df1.join(df2, how='inner')
print(df3)
print(df4)
print(df5)
A B C D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1
K2 A1 B2 NaN NaN
A B C D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1
K2 A1 B2 NaN NaN
K3 NaN NaN C3 D2
A B C D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1
concat
制定按某个轴进行连接(可横向可纵向),也可以指定连接方法。
def concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False,
sort=None, copy=True):
属性
描述
objs
合并的对象集合。可以是Series、DataFrame
axis
合并方法。默认0,表示纵向,1横向
join
默认outer并集,inner交集。只有这两种
join_axes
按哪些对象的索引保存
ignore_index
默认Fasle忽略。是否忽略原index
keys
为原始DataFrame添加一个键,默认无
示例(1)
s1 = pd.Series(['a', 'b'])
s2 = pd.Series(['c', 'd'])
s3 = pd.concat([s1, s2])
s4 = pd.concat([s1, s2], ignore_index=True)
print(s3)
print(s4)
0 a
1 b
dtype: object
0 c
1 d
dtype: object
0 a
1 b
0 c
1 d
dtype: object
0 a
1 b
2 c
3 d
dtype: object
示例(2)
df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['A', 0])
df2 = pd.DataFrame([['a', 1], ['b', 2]], columns=['B', 0])
df3 = pd.concat([df1, df2], join='inner')
print(df3)
0
0 1
1 2
0 1
1 2
示例(3)
df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['A', 0])
df2 = pd.DataFrame([['a', 1], ['b', 2]], columns=['B', 0])
df3 = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
print(df3)
A 0 B 0
0 a 1 a 1
1 b 2 b 2
append
横向和纵向同时扩充,不考虑columns和index
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A1'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
s2 = pd.Series(['X0','X1'], index=['A','B'])
result = df1.append(s2, ignore_index=True)
print(result)
A B
K0 A0 B0
K1 A1 B1
K2 A1 B2
A B
0 A0 B0
1 A1 B1
2 A1 B2
3 X0 X1
汇总
concat:可以沿一条轴将多个对象连接到一起
merge:可以根据一个或多个键将不同的DataFrame中的行连接起来。
join:inner是交集,outer是并集。
到此这篇关于DataFrame 数据合并实现(merge,join,concat)的文章就介绍到这了,更多相关DataFrame 数据合并内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!