一、问题描述
引出问题之前我们先来复习一下矩阵乘积的标准算法。
int ra,ca;//矩阵A的行数和列数
int rb,cb;//矩阵B的行数和列数
voidmatrixMultiply()
{for(int i=0;i
{for(int j=0;j
{int sun=0;for(int k=0;k<=ca;k++)
{
sum+=a[i][k]*b[k][j];
}
c[i][j]=sum;
}
}
}
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采用(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,而采用A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
加括号的方式对计算量有很大的影响,于是自然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
二、问题分析
矩阵连乘也是Catalan数的一个常用的例子,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。
下面考虑使用动态规划法解矩阵连乘积的最优计算次序问题。
1、分析最优解的结构
问题的最优子结构性质是该问题可以用动态规划求解的显著特征!!!
2、建立递归关系
3、计算最优值
public static void matrixChain(intn) {for (int i = 1; i <= n; i++) {
m[i][i]= 0;
}for (int r = 2; r <= n; r++) {//i与j的差值
for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;
m[i][j]= m[i + 1][j] + p[i - 1] * p[i] *p[j];
s[i][j]=i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] *p[j];if (t
m[i][j]=t;
s[i][j]=k;
}
}
}
}
}
4、构造最优解
public static void traceback(int i, intj) {if (i ==j) {
System.out.printf("A%d", i); //输出是第几个数据
return;
}
System.out.printf("(");
traceback(i, s[i][j]);//递归下一个数据
System.out.printf(" x ");
traceback(s[i][j]+ 1, j);
System.out.printf(")");
}
三、总结