矩阵连乘问题算法思想_算法分析与设计——矩阵连乘问题

问题描述:

给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。

问题解析:

由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

完全加括号的矩阵连乘积可递归地定义为:

(1)单个矩阵是完全加括号的;

(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)

例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。

看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次((A1*A2*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000次

所以问题是:如何确定运算顺序,可以使计算量达到最小化。

算法思路:

例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是:

A1:30*35;     A2:35*15;     A3:15*5;     A4:5*10;     A5:10*20;     A6:20*25

递推关系:

设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。

当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n

当i

综上,有递推关系如下:

计算最优值:

用动态规划算法解此问题时,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存以解决的子问题的答案,每个子问题只计算一次,而在后面用到时只需要简单查一下,避免了大量的重复计算,最后得到了多项式时间的算法。

代码如下:

1 void matrixChain(int p[],int m[][],ints[][])2 //p用来记录矩阵,m[i][j]表示第i个矩阵到第j个矩阵的最优解,s[][]记录从哪里断开可以得到最优解

3 {4 int n=len-1;5 for(int i=1; i<=n; i++)//初始化数组

6 m[i][j]=0;7 for(int r=2; r<=n; r++)//对角线循环

8 {9 for(int i=1; i<=n-r+1; i++) //行循环

10 {11 int j=i+r-1;//列的控制

12 m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];//找m[i][j]的最小值,初始化使k=i;

13 s[i][j]=i;14 for(int k=i+1; k

20 m[i][j]=t;21 }22 }23 }24 }25 }

构造最优解:

若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。因此,从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]])。同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。

代码如下:

1 void traceback(int s[][],int i,intj)2 {3 if(i==j)4 retiurn;5 traceback(s,i,s[i][j]);6 traceback(s,s[i][j]+1,j);7 cout<

完整代码如下:

1 #include

2 #include

3 #include

4 #include

5 using namespacestd;6 const int MAX = 100;7 intn;8 int p[MAX+1],m[MAX][MAX],s[MAX][MAX];9 //p用来记录矩阵,m[i][j]表示第i个矩阵到第j个矩阵的最优解,s[][]记录从哪里断开可以得到最优解

10 voidmatrixChain()11 {12 for(int i=1; i<=n; i++)//初始化数组

13 m[i][i]=0;14 for(int r=2; r<=n; r++)//对角线循环

15 {16 for(int i=1; i<=n-r+1; i++) //行循环

17 {18 int j=i+r-1;//列的控制

19 m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];//找m[i][j]的最小值,初始化使k=i;

20 s[i][j]=i;21 for(int k=i+1; k

27 m[i][j]=t;28 }29 }30 }31 }32 }33 void traceback(int i,intj)34 {35 if(i==j)36 return;37 traceback(i,s[i][j]);38 traceback(s[i][j]+1,j);39 cout<>n;44 for(int i=0; i<=n; i++)45 cin>>p[i];46 matrixChain();47 traceback(1,n);48 cout<

输出结果如下:

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值