python文章分类tf-idf案例_如何在python中使用tf-idf svm sklearn绘制文本分...

我已经按照this tutorial的教程使用tf-idf和SVM实现了文本分类

分类工作正常.

现在我想绘制tf-idf值(即特征),并查看最终超平面如何生成,将数据分类为两个类.

实施的代码如下:

import os

import numpy as np

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import confusion_matrix

from sklearn.svm import LinearSVC

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import StratifiedKFold

def make_Corpus(root_dir):

polarity_dirs = [os.path.join(root_dir,f) for f in os.listdir(root_dir)]

corpus = []

for polarity_dir in polarity_dirs:

reviews = [os.path.join(polarity_dir,f) for f in os.listdir(polarity_dir)]

for review in reviews:

doc_string = "";

with open(review) as rev:

for line in rev:

doc_string = doc_string + line

if not corpus:

corpus = [doc_string]

else:

corpus.append(doc_string)

return corpus

#Create a corpus with each document having one string

root_dir = 'txt_sentoken'

corpus = make_Corpus(root_dir)

#Stratified 10-cross fold validation with SVM and Multinomial NB

labels = np.zeros(2000);

labels[0:1000]=0;

labels[1000:2000]=1;

kf = StratifiedKFold(n_splits=10)

totalsvm = 0 # Accuracy measure on 2000 files

totalNB = 0

totalMatSvm = np.zeros((2,2)); # Confusion matrix on 2000 files

totalMatNB = np.zeros((2,2));

for train_index, test_index in kf.split(corpus,labels):

X_train = [corpus[i] for i in train_index]

X_test = [corpus[i] for i in test_index]

y_train, y_test = labels[train_index], labels[test_index]

vectorizer = TfidfVectorizer(min_df=5, max_df = 0.8, sublinear_tf=True, use_idf=True,stop_words='english')

train_corpus_tf_idf = vectorizer.fit_transform(X_train)

test_corpus_tf_idf = vectorizer.transform(X_test)

model1 = LinearSVC()

model2 = MultinomialNB()

model1.fit(train_corpus_tf_idf,y_train)

model2.fit(train_corpus_tf_idf,y_train)

result1 = model1.predict(test_corpus_tf_idf)

result2 = model2.predict(test_corpus_tf_idf)

totalMatSvm = totalMatSvm + confusion_matrix(y_test, result1)

totalMatNB = totalMatNB + confusion_matrix(y_test, result2)

totalsvm = totalsvm+sum(y_test==result1)

totalNB = totalNB+sum(y_test==result2)

print totalMatSvm, totalsvm/2000.0, totalMatNB, totalNB/2000.0

我已经阅读了如何绘制图形,但找不到任何与绘制tf-idf的特征以及SVM生成的超平面相关的教程.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值