android7.0 进程管理,Android 7.0 ActivityManagerService(8) 进程管理相关流程分析(2) updateOomAdjLocked...

前一篇博客进程管理相关流程分析(1)里,

我们介绍了AMS中updateLruProcessLocked函数相关的流程。

updateLruProcessLocked只是按照进程中运行的组件,粗略地定义了不同进程的优先级。

实际上,Android根据进程的oom_adj进行了更加细致的进程分类,

而AMS中的updateOomAdjLocked函数,就是用于更新进程的oom_adj值。

本篇博客中,我们来看看AMS中updateOomAdjLocked相关的流程。

一、ProcessList.java中的oom_adj

进程在不同场景下的oom_adj值,定义于ProcessList.java中。

考虑到updateOomAdjLocked函数极其的复杂,我们有必要先了解一下不同oom_adj的含义。

final class ProcessList {

..............

// OOM adjustments for processes in various states:

// Uninitialized value for any major or minor adj fields

// 未初始化时,定义为-10000

static final int INVALID_ADJ = -10000;

..............

// Adjustment used in certain places where we don't know it yet.

// (Generally this is something that is going to be cached, but we

// don't know the exact value in the cached range to assign yet.)

// 如注释所述,过渡态的值

static final int UNKNOWN_ADJ = 1001;

// This is a process only hosting activities that are not visible,

// so it can be killed without any disruption.

// 从注释来看,这里应该是仅持有Activity的background进程对应的值,最小为900,最大为906

// 实际上empty进程和background进程均会使用这些值

static final int CACHED_APP_MAX_ADJ = 906;

static final int CACHED_APP_MIN_ADJ = 900;

// The B list of SERVICE_ADJ -- these are the old and decrepit

// services that aren't as shiny and interesting as the ones in the A list.

// 这里应该是对应持有老旧服务的background进程

static final int SERVICE_B_ADJ = 800;

// This is the process of the previous application that the user was in.

// This process is kept above other things, because it is very common to

// switch back to the previous app.

// 当前页面对应进程的前一个进程

// 例如,从A进程的Activity跳转到B进程的Activity

// 此时B进程就是当前进程,A进程就是previous进程

// 由于用户可能在A、B Activity之间切换,因此为previous进程赋予一个单独的oom_adj

// 本质上来说,这仍是background进程

static final int PREVIOUS_APP_ADJ = 700;

// This is a process holding the home application -- we want to try

// avoiding killing it, even if it would normally be in the background,

// because the user interacts with it so much.

// 用户经常会和home进程交互,因此单独为home进程赋予一个oom_adj

// 一般情况下,home进程也可以归属到background进程

static final int HOME_APP_ADJ = 600;

// This is a process holding an application service -- killing it will not

// have much of an impact as far as the user is concerned.

// service进程

static final int SERVICE_ADJ = 500;

// This is a process with a heavy-weight application. It is in the

// background, but we want to try to avoid killing it. Value set in

// system/rootdir/init.rc on startup.

// 对于heavy_weight进程,虽是后台进程,但重要性甚至大于service进程

// 应该是该类型的进程,重新启动的成本太高了,因此尽量避免杀掉吧

// 这是所谓的“尾大不掉”吧

// 需要指出的是,这里的注释太老旧了,Android N里的路径已经是system/core/rootdir/init.rc

// 同时,没有看到与heavy_weight相关的配置,个人觉得注释的意思是:

// 可以按照需要自己配置吧,类似于init进程的写法:

// # Set init and its forked children's oom_adj.

// write /proc/1/oom_score_adj -1000

static final int HEAVY_WEIGHT_APP_ADJ = 400;

// This is a process currently hosting a backup operation. Killing it

// is not entirely fatal but is generally a bad idea.

// 正在执行backup的进程

// 与heavy_weight进程一样,android已经不完全按照进程的组件来划分重要性了

// 还考虑了进程当前正在执行的操作

static final int BACKUP_APP_ADJ = 300;

// This is a process only hosting components that are perceptible to the

// user, and we really want to avoid killing them, but they are not

// immediately visible. An example is background music playback.

// “perceptible”的意思是:可察觉到

// 从这里来看,其实这种进程已经属于visible进程的范畴了,毕竟用户可以察觉到这种进程的存在

// 不过这种进程属于不包含visible activity,但包含绑定了Activity的service

static final int PERCEPTIBLE_APP_ADJ = 200;

// This is a process only hosting activities that are visible to the

// user, so we'd prefer they don't disappear.

// visible进程, 侧重于包含visible activity

static final int VISIBLE_APP_ADJ = 100;

static final int VISIBLE_APP_LAYER_MAX = PERCEPTIBLE_APP_ADJ - VISIBLE_APP_ADJ - 1;

// This is the process running the current foreground app. We'd really

// rather not kill it!

// foreground进程

static final int FOREGROUND_APP_ADJ = 0;

// This is a process that the system or a persistent process has bound to,

// and indicated it is important.

// 系统进程或常驻进程绑定的service所在的进程

static final int PERSISTENT_SERVICE_ADJ = -700;

// This is a system persistent process, such as telephony. Definitely

// don't want to kill it, but doing so is not completely fatal.

// 常驻进程

static final int PERSISTENT_PROC_ADJ = -800;

// The system process runs at the default adjustment.

// 系统进程

static final int SYSTEM_ADJ = -900;

// Special code for native processes that are not being managed by the system (so

// don't have an oom adj assigned by the system).

// 框架层无法约束的native进程

static final int NATIVE_ADJ = -1000;

..............

// The minimum number of cached apps we want to be able to keep around,

// without empty apps being able to push them out of memory.

// 从注释来看,min_cached_apps不包含empty进程的数量

static final int MIN_CACHED_APPS = 2;

// The maximum number of cached processes we will keep around before killing them.

// NOTE: this constant is *only* a control to not let us go too crazy with

// keeping around processes on devices with large amounts of RAM. For devices that

// are tighter on RAM, the out of memory killer is responsible for killing background

// processes as RAM is needed, and we should *never* be relying on this limit to

// kill them. Also note that this limit only applies to cached background processes;

// we have no limit on the number of service, visible, foreground, or other such

// processes and the number of those processes does not count against the cached

// process limit.

// 这里的注释需要看一看,这里应该指系统可保留的所有后台和empty进程最大值

// MAX_CACHED_APPS不限制service, visible, foreground, or other such processes的数量

// 仅仅作为参考值,系统并不会真的保留这么多后台进程,毕竟LMK将按需看kill them

static final int MAX_CACHED_APPS = 32;

..............

// The maximum number of empty app processes we will let sit around.

//最多保留16个empty进程

private static final int MAX_EMPTY_APPS = computeEmptyProcessLimit(MAX_CACHED_APPS);

// The number of empty apps at which we don't consider it necessary to do

// memory trimming.

// Android依靠LMK杀***进程来释放内存

// 当empty进程数少于这个门限(8)时,说明LMK已经杀***了一部分empty进程

// 于是AMS主动释放一些应用的内存

static final int TRIM_EMPTY_APPS = MAX_EMPTY_APPS/2;

// The number of cached at which we don't consider it necessary to do

// memory trimming.

// 与TRIM_EMPTY_APPS的用途类似

// 当后台进程少于该门限(5)时,AMS主动释放一些应用的内存

static final int TRIM_CACHED_APPS = (MAX_CACHED_APPS-MAX_EMPTY_APPS)/3;

...................

//以下是之前博客提到过的,LMK预定义的阈值,这里区分了高内存和低内存的机器

//例如对于低内存机器而言,当内存小于12288KB时,就要kill掉oom_adj大于FOREGROUND_APP_ADJ的进程

//对于高内存的机器而言,当内存小于73728时,才kill掉oom_adj大于FOREGROUND_APP_ADJ的进程

// These are the various interesting memory levels that we will give to

// the OOM killer. Note that the OOM killer only supports 6 slots, so we

// can't give it a different value for every possible kind of process.

private final int[] mOomAdj = new int[] {

FOREGROUND_APP_ADJ, VISIBLE_APP_ADJ, PERCEPTIBLE_APP_ADJ,

BACKUP_APP_ADJ, CACHED_APP_MIN_ADJ, CACHED_APP_MAX_ADJ

};

// These are the low-end OOM level limits. This is appropriate for an

// HVGA or smaller phone with less than 512MB. Values are in KB.

private final int[] mOomMinFreeLow = new int[] {

12288, 18432, 24576,

36864, 43008, 49152

};

// These are the high-end OOM level limits. This is appropriate for a

// 1280x800 or larger screen with around 1GB RAM. Values are in KB.

private final int[] mOomMinFreeHigh = new int[] {

73728, 92160, 110592,

129024, 147456, 184320

};

}

ProcessList.java中定义的oom_adj值较多,由此可见Android对于进程的管理考虑的很细,这也意味着对应的工作流程会很复杂。

除去oom_adj的定义外,ProcessList.java中还定义了一些门限值,决定系统在合适的时候,主动进行一些内存回收工作,后文分析具体代码流程时将会遇到。根据自己分析源码的感受,个人觉得对这些变量有一些了解,是理解具体流程的必要条件。

这里按照Android对进程的分类,粗略划分一下不同oom_adj对应的场景,以便后文的分析:

8173a75e74ab715fcf4481287d880e29.png

这里唯一要注意的是:CACHED_APP_MIN_ADJ和CACHED_APP_MAX_ADJ的分配,

跨越了后台进程和Empty进程的范畴。

Android并不是kill掉所有Empty进程后,才kill后台进程。

它是将CACHED_APP_MIN_ADJ和CACHED_APP_MAX_ADJ之间的范围,分成多个slot。

然后在每个slot中,分别分配一定量的后台进程和Empty进程。

在单独的slot中,会先kill掉empty进程,后kill掉后台进程。

只有当一个slot中的进程kill完毕后,才会kill掉下一个slot中的进程。

我们将从后面的代码中,得到对应的分析依据,这里先有个印象即可。

二、AMS中的updateOomAdjLocked

AMS中有几个重载的updateOomAdjLocked函数,我们从比较通用的一个入手进行分析。

该updateOomAdjLocked函数较长,分段进行分析。

1 updateOomAdjLocked Part-I

final void updateOomAdjLocked() {

//正常情况下,resumedAppLocked返回当前正处于前台的Activity,即AMS维护的mResumedActivity

//如果没有mResumedActivity,则返回前台Task中的mPausingActivity或最顶端的Activity

final ActivityRecord TOP_ACT = resumedAppLocked();

//得到当前前台Activity对应进程信息

final ProcessRecord TOP_APP = TOP_ACT != null ? TOP_ACT.app : null;

..................

//得到LRU表中,统计进程的数量

final int N = mLruProcesses.size();

..................

// Reset state in all uid records.

// UidRecord用于记录某个用户组中的进程运行状态

// 该对象可以记录用户组中的进程数量,但只记录最重要进程的状态,

// 即优先级最高进程的状态决定了用户组的状态

for (int i=mActiveUids.size()-1; i>=0; i--) {

final UidRecord uidRec = mActiveUids.valueAt(i);

............

//重置

uidRec.reset();

}

//更新Task的mLayerRank变量

//Task中无可见Activity时,mLayerRank为-1

//Task有可见Activity时,按显示的先后,mLayerRank逐渐增加

mStackSupervisor.rankTaskLayersIfNeeded();

//每次调节oom_adj时,都会有唯一的序号

mAdjSeq++;

mNewNumServiceProcs = 0;

mNewNumAServiceProcs = 0;

final int emptyProcessLimit;

final int cachedProcessLimit;

//mProcessLimit中记录的是:

//系统允许保留的后台进程和empty进程的总和

if (mProcessLimit <= 0) {

emptyProcessLimit = cachedProcessLimit = 0;

} else if (mProcessLimit == 1) {

//居然优先保证的是empty进程数量

emptyProcessLimit = 1;

cachedProcessLimit = 0;

} else {

//emptyProcess和cachedProcess的数量,各占mProcessLimit的一半

emptyProcessLimit = ProcessList.computeEmptyProcessLimit(mProcessLimit);

cachedProcessLimit = mProcessLimit - emptyProcessLimit;

}

// Let's determine how many processes we have running vs.

// how many slots we have for background processes; we may want

// to put multiple processes in a slot of there are enough of

// them.

// numSlots等于3

// 后台进程和empty进程对应的oom_adj,可取的值一共有6个

// 这里划分出3个slot, 后台进程和empty进程将被分配到这3个slot中

// 2代表的是不同slot的oom_adj差异

int numSlots = (ProcessList.CACHED_APP_MAX_ADJ

- ProcessList.CACHED_APP_MIN_ADJ + 1) / 2;

//计算出当前的empty进程数量

//N为LRU表中维护的总进程数量

//mNumNonCachedProcs表示非cached/empty进程的数量

//mNumCachedHiddenProcs表示cachedHidden进程的数量 (就是后台进程的数量)

int numEmptyProcs = N - mNumNonCachedProcs - mNumCachedHiddenProcs;

if (numEmptyProcs > cachedProcessLimit) {

// If there are more empty processes than our limit on cached

// processes, then use the cached process limit for the factor.

// This ensures that the really old empty processes get pushed

// down to the bottom, so if we are running low on memory we will

// have a better chance at keeping around more cached processes

// instead of a gazillion empty processes.

// 超过门限,则修改

// 这里有点奇怪,为什么不用emptyProcessLimit来比较和修改?

numEmptyProcs = cachedProcessLimit;

}

//计算出每个slot中,可容纳empty进程的数量

int emptyFactor = numEmptyProcs/numSlots;

if (emptyFactor < 1) emptyFactor = 1;

//计算出每个slot中,可容纳后台进程的数量

int cachedFactor = (mNumCachedHiddenProcs > 0 ? mNumCachedHiddenProcs : 1)/numSlots;

if (cachedFactor < 1) cachedFactor = 1;

//从上面的分配可以看出,Android并不是先kill完所有empty进程,才去kill后台进程的

//这二者之间按比例分布在不同的slot中

//每kill一个优先级对应的slot时,都会kill一部分empty进程和后台进程

.........................

//在本次处理前,重置变量

mNumNonCachedProcs = 0;

mNumCachedHiddenProcs = 0;

.....................

}

updateOomAdjLocked函数的第一部分,并没有什么具体的逻辑,主要是初始化一些变量,为后续的oom_adj调整做好准备。

个人觉得大致了解即可,不用太深究每一个变量的含义。

2 updateOomAdjLocked Part-II

这一部分将计算和更新每个进程的oom_adj值。

..................

// First update the OOM adjustment for each of the

// application processes based on their current state.

//empty进程相对而言,oom_adj的值还是要大于后台进程

int curCachedAdj = ProcessList.CACHED_APP_MIN_ADJ;

int nextCachedAdj = curCachedAdj+1;

int curEmptyAdj = ProcessList.CACHED_APP_MIN_ADJ;

int nextEmptyAdj = curEmptyAdj+2;

for (int i=N-1; i>=0; i--) {

//从后往前,依次取出LRU中进程对应的ProcessRecord

ProcessRecord app = mLruProcesses.get(i);

if (!app.killedByAm && app.thread != null) {

app.procStateChanged = false;

//计算并更新进程的curProcState,并得到初步的oom_adj值

computeOomAdjLocked(app, ProcessList.UNKNOWN_ADJ, TOP_APP, true, now);

// If we haven't yet assigned the final cached adj

// to the process, do that now.

// computeOomAdjLocked没能完成oom_adj的计算时,

// 进一步调整oom_adj值 (从代码来看,computeOomAdjLocked应该是无法计算后台进程和empty进程)

if (app.curAdj >= ProcessList.UNKNOWN_ADJ) {

//根据进程的状态调整oom_adj

switch (app.curProcState) {

//包含Activity的后台进程,或其客户端进程

case ActivityManager.PROCESS_STATE_CACHED_ACTIVITY:

case ActivityManager.PROCESS_STATE_CACHED_ACTIVITY_CLIENT:

// This process is a cached process holding activities...

// assign it the next cached value for that type, and then

// step that cached level.

app.curRawAdj = curCachedAdj;

//当前进程以BIND_ABOVE_CLIENT绑定一个Service时,modifyRawOomAdj才会生效

//结果是进一步增加oom_adj

app.curAdj = app.modifyRawOomAdj(curCachedAdj);

................

//调整curCachedAdj和nextCachedAdj

if (curCachedAdj != nextCachedAdj) {

stepCached++;

//可以看出,每个slot分配的进程数超过对应门限时

//才会增加curCachedAdj和nextCachedAdj,即向下个slot分配进程

if (stepCached >= cachedFactor) {

stepCached = 0;

curCachedAdj = nextCachedAdj;

nextCachedAdj += 2;

if (nextCachedAdj > ProcessList.CACHED_APP_MAX_ADJ) {

nextCachedAdj = ProcessList.CACHED_APP_MAX_ADJ;

}

}

}

break;

default:

// For everything else, assign next empty cached process

// level and bump that up. Note that this means that

// long-running services that have dropped down to the

// cached level will be treated as empty (since their process

// state is still as a service), which is what we want.

// 如果后台进程不含有Activity等,将被视为empty进程(参考注释)

//与上面的代码一样,修改oom_adj

//同样按照slot来分配empty进程的oom_adj

app.curRawAdj = curEmptyAdj;

app.curAdj = app.modifyRawOomAdj(curEmptyAdj);

..............

if (curEmptyAdj != nextEmptyAdj) {

stepEmpty++;

if (stepEmpty >= emptyFactor) {

stepEmpty = 0;

curEmptyAdj = nextEmptyAdj;

nextEmptyAdj += 2;

if (nextEmptyAdj > ProcessList.CACHED_APP_MAX_ADJ) {

nextEmptyAdj = ProcessList.CACHED_APP_MAX_ADJ;

}

}

}

break;

}

}

//更新进程对应的信息

applyOomAdjLocked(app, true, now, nowElapsed);

// Count the number of process types.

// 更新不同类型进程的数量

switch (app.curProcState) {

case ActivityManager.PROCESS_STATE_CACHED_ACTIVITY:

case ActivityManager.PROCESS_STATE_CACHED_ACTIVITY_CLIENT:

//更新后台进程的数量(包含Activity的进程,或其客户端)

mNumCachedHiddenProcs++;

numCached++;

if (numCached > cachedProcessLimit) {

//超过门限时,直接kill掉

app.kill("cached #" + numCached, true);

}

break;

case ActivityManager.PROCESS_STATE_CACHED_EMPTY:

//更新empty进程的数量

//超过trim门限,同时empty进程存活时间大于30min时,被kill掉

if (numEmpty > ProcessList.TRIM_EMPTY_APPS

&& app.lastActivityTime < oldTime) {

app.kill("empty for "

+ ((oldTime + ProcessList.MAX_EMPTY_TIME - app.lastActivityTime)

/ 1000) + "s", true);

} else {

numEmpty++;

//empty进程的数量超过门限后,kill掉

if (numEmpty > emptyProcessLimit) {

app.kill("empty #" + numEmpty, true);

}

}

break;

default:

//更新其它进程的数量

mNumNonCachedProcs++;

break;

}

//独立进程中没有服务时,直接kill掉

if (app.isolated && app.services.size() <= 0) {

// If this is an isolated process, and there are no

// services running in it, then the process is no longer

// needed. We agressively kill these because we can by

// definition not re-use the same process again, and it is

// good to avoid having whatever code was running in them

// left sitting around after no longer needed.

app.kill("isolated not needed", true);

} else {

// Keeping this process, update its uid.

final UidRecord uidRec = app.uidRecord;

//初始时,reset过,值为PROCESS_STATE_CACHED_EMPTY

//这个值越小,说明uid含有的进程越重要,最小值为PROCESS_STATE_PERSISTENT

if (uidRec != null && uidRec.curProcState > app.curProcState) {

uidRec.curProcState = app.curProcState;

}

}

//home本身就是个后台进程,若当前进程状态大于home

//则该进程是个不重要的后台进程,或empty进程

if (app.curProcState >= ActivityManager.PROCESS_STATE_HOME

&& !app.killedByAm) {

numTrimming++;

}

}

}

................

updateOomAdjLocked第二部分没有让我们失望,可谓是“杀伐果断”。

从上面的代码我们可以看出:

1、该部分代码,将逆序处理LRU中的每一个进程。

我们可以看到,当某类进程的数量超过门限时,将被kill掉。

由于是逆序处理LRU中的进程,因此不重要的进程(使用较少、较老)将先被kill掉。

2、利用computeOomAdjLocked函数,计算每个进程的oom_adj。

从代码来看,对于cached process而言,computeOomAdjLocked可能无法计算出其oom_adj,

因此这类进程被单独处理。

computeOomAdjLocked函数较长,需要单独用一篇博客介绍。

3、上面的代码证明了我们之前的分析:

后台进程和empty进程,在CACHED_APP_MIN_ADJ和CACHED_APP_MAX_ADJ混合分布。

这段区间被划分为不同的slot,前一个slot中的位置分配完毕后,才会分配后一个slot。

由于后一个slot的oom_adj比较大,将被优先kill掉,再次和LRU的定义结合起来了。

4、调用applyOomAdjLocked函数,更新进程相关的信息。

5、对于“隔离”的进程,Android的处理比较严格。

若其中没有运行服务,则直接kill掉。

此外,一个用户组的重要性,由其中最重要的进程决定。

这也符合我们的常识。

6、最后,该部分代码统计了重要性小于home的后台进程数量。

后面的代码将使用该变量。

这一部分代码的流程基本如下图所示:

7d5df085d08979723c587aae04fb8649.png

3 updateOomAdjLocked Part-III

从之前的代码,我们知道了updateOomAdjLocked的第二部分负责更新进程的oom_adj值,

这些值最终将决定进程何时被LMK kill掉。

同时,第二部分还会在进程数量超过门限等情况下,主动kill掉一些进程。

与第二部分不同的是,在updateOomAdjLocked的第三部分主要是在不kill进程的前提下,

尽可能地主动回收进程的一些内存。

..........

//computeOomAdjLocked函数中,更新了mNewNumServiceProcs的值

//将其保存到mNumServiceProcs中

mNumServiceProcs = mNewNumServiceProcs;

// 以下代码用于计算内存回收等级

// Now determine the memory trimming level of background processes.

// Unfortunately we need to start at the back of the list to do this

// properly. We only do this if the number of background apps we

// are managing to keep around is less than half the maximum we desire;

// if we are keeping a good number around, we'll let them use whatever

// memory they want.

// 得到当前后台进程和empty进程的数量

final int numCachedAndEmpty = numCached + numEmpty;

// memFactor将用于保存内存回收等级

int memFactor;

//后台进程数量小于5,并且empty进程数量小于8时

if (numCached <= ProcessList.TRIM_CACHED_APPS

&& numEmpty <= ProcessList.TRIM_EMPTY_APPS) {

//总数小于3时,内存回收等级为critical

if (numCachedAndEmpty <= ProcessList.TRIM_CRITICAL_THRESHOLD) {

memFactor = ProcessStats.ADJ_MEM_FACTOR_CRITICAL;

//总数小于5时,内存回收等级为low

} else if (numCachedAndEmpty <= ProcessList.TRIM_LOW_THRESHOLD) {

memFactor = ProcessStats.ADJ_MEM_FACTOR_LOW;

//否则内存回收等级为moderate

} else {

memFactor = ProcessStats.ADJ_MEM_FACTOR_MODERATE;

}

} else {

//后台和empty进程足够时,内存回收等级为normal

memFactor = ProcessStats.ADJ_MEM_FACTOR_NORMAL;

}

//从上面的代码,我们可以看出当前后台进程和empty进程数量越少时,内存的回收等级越高

//个人觉得这么设计的原因是:

//在内存足够的情况下,即当后台进程和empty进程的数量没有超过规定门限时,

//系统不会主动去kill掉后台进程和empty进程。

//当LMK察觉到内存不够用时,才会去主动kill掉进程(优先kill掉后台进程和empty进程)

//因此,当系统检查到empty和后台进程数量较少时,就推断出内存不够了

// We always allow the memory level to go up (better). We only allow it to go

// down if we are in a state where that is allowed, *and* the total number of processes

// has gone down since last time.

..........

//根据条件判断,是否需要修改memFactor (见注释)

//一般情况下,内存回收等级变高时(即允许尽可能多地回收),不允许主动降低它

//但mAllowLowerMemLevel为false,或进程数量变多时,可以降低

if (memFactor > mLastMemoryLevel) {

if (!mAllowLowerMemLevel || mLruProcesses.size() >= mLastNumProcesses) {

memFactor = mLastMemoryLevel;

...........

}

}

..........

//保存变量

mLastMemoryLevel = memFactor;

mLastNumProcesses = mLruProcesses.size();

//memFactor保存到mProcessStats中,与之前不等时,返回true

//即内存回收等级与之前不一致时,返回true

boolean allChanged = mProcessStats.setMemFactorLocked(memFactor, !isSleepingLocked(), now);

//记录ProcessStats状态

final int trackerMemFactor = mProcessStats.getMemFactorLocked();

//内存状态不等于normal,表示所有进程都要进行内存回收工作

if (memFactor != ProcessStats.ADJ_MEM_FACTOR_NORMAL) {

if (mLowRamStartTime == 0) {

mLowRamStartTime = now;

}

int step = 0;

//根据内存回收等级,得到对应的fgTrimLevel (即前台进程的内存回收等级)

//ComponentCallbacks2中定义的回收等级,值越大,越是会尽可能的回收

int fgTrimLevel;

switch (memFactor) {

case ProcessStats.ADJ_MEM_FACTOR_CRITICAL:

fgTrimLevel = ComponentCallbacks2.TRIM_MEMORY_RUNNING_CRITICAL;

break;

case ProcessStats.ADJ_MEM_FACTOR_LOW:

fgTrimLevel = ComponentCallbacks2.TRIM_MEMORY_RUNNING_LOW;

break;

default:

fgTrimLevel = ComponentCallbacks2.TRIM_MEMORY_RUNNING_MODERATE;

break;

}

//前面已经分析过,numTimming中记录的是重要性低于home的后台进程数量

int factor = numTrimming/3;

//决定factor的值

//与之前划分slot的思想相似,factor代表每个slot可以分配进程的数量

int minFactor = 2;

if (mHomeProcess != null) minFactor++;

if (mPreviousProcess != null) minFactor++;

if (factor < minFactor) factor = minFactor;

//初始level为TRIM_MEMORY_COMPLETE (回收的最高等级)

int curLevel = ComponentCallbacks2.TRIM_MEMORY_COMPLETE;

//开始逆序处理LRU中的每一个进程

// 对应重要性大于home的进程而言,重要性越高,内存回收等级越低

// 对于重要性小于home的进程,排在LRU表越靠后,即越重要回收等级越高

// 这么安排的理由有两个:1、此时越不重要的进程,其中运行的组件越少,能够回收的内存不多,不需要高回收等级

// 2、越不重要的进程越有可能被LMK kill掉,没必要以高等级回收内存

for (int i=N-1; i>=0; i--) {

ProcessRecord app = mLruProcesses.get(i);

//更新进程信息

if (allChanged || app.procStateChanged) {

setProcessTrackerStateLocked(app, trackerMemFactor, now);

app.procStateChanged = false;

}

//处理重要性小于home的进程

if (app.curProcState >= ActivityManager.PROCESS_STATE_HOME

&& !app.killedByAm) {

if (app.trimMemoryLevel < curLevel && app.thread != null) {

try {

.............

//回调ApplicationThread的scheduleTrimMemory函数,回收内存

//

app.thread.scheduleTrimMemory(curLevel);

} catch (RemoteException e) {

}

........

}

app.trimMemoryLevel = curLevel;

//更新trimMemoryLevel,LRU中越有排在前面,trimMemroyLevel越低

step++;

//一个slot分配满,开始下一个slot

if (step >= factor) {

step = 0;

switch (curLevel) {

case ComponentCallbacks2.TRIM_MEMORY_COMPLETE:

curLevel = ComponentCallbacks2.TRIM_MEMORY_MODERATE;

break;

case ComponentCallbacks2.TRIM_MEMORY_MODERATE:

curLevel = ComponentCallbacks2.TRIM_MEMORY_BACKGROUND;

break;

}

}

}

//处理Heavy weight进程

} else if (app.curProcState == ActivityManager.PROCESS_STATE_HEAVY_WEIGHT) {

//Heavy weight进程的trimLevel小于background时,才会以background回收

if (app.trimMemoryLevel < ComponentCallbacks2.TRIM_MEMORY_BACKGROUND

&& app.thread != null) {

try {

...............

app.thread.scheduleTrimMemory(

ComponentCallbacks2.TRIM_MEMORY_BACKGROUND);

} catch (RemoteException e) {

}

}

//更新

app.trimMemoryLevel = ComponentCallbacks2.TRIM_MEMORY_BACKGROUND;

} else {

//重要性低于等于IMPROTTANT Background的,以TRIM_MEMORY_UI_HIDDEN等级回收

if ((app.curProcState >= ActivityManager.PROCESS_STATE_IMPORTANT_BACKGROUND

|| app.systemNoUi) && app.pendingUiClean) {

// If this application is now in the background and it

// had done UI, then give it the special trim level to

// have it free UI resources.

final int level = ComponentCallbacks2.TRIM_MEMORY_UI_HIDDEN;

if (app.trimMemoryLevel < level && app.thread != null) {

try {

............

app.thread.scheduleTrimMemory(level);

} catch (RemoteException e) {

}

}

app.pendingUiClean = false;

}

//之前的回收等级不够时,以新的回收等级回收内存

if (app.trimMemoryLevel < fgTrimLevel && app.thread != null) {

try {

.............

app.thread.scheduleTrimMemory(fgTrimLevel);

} catch (RemoteException e) {

}

}

app.trimMemoryLevel = fgTrimLevel;

}

}

//else处理内存回收等级为normal的情况

} else {

if (mLowRamStartTime != 0) {

mLowRamTimeSinceLastIdle += now - mLowRamStartTime;

mLowRamStartTime = 0;

}

for (int i=N-1; i>=0; i--) {

ProcessRecord app = mLruProcesses.get(i);

//更新状态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值