互斥事件的概念和公式_事件的互斥、对立与独立

本文通过一道高一数学试题,探讨了互斥、对立和独立事件的定义和关系。互斥事件是指两个事件不能同时发生,对立事件是互斥且它们的并事件涵盖所有可能情况。独立事件则是指两个事件的发生彼此不相关。文章指出,互斥事件一定不是独立事件,而独立事件一定不是互斥事件,除非涉及的是必然事件或不可能事件,它们既是独立的也是互斥的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2c3dbf258187eec4090b5036d387e3df.png

今天下午本来在考虑基本不等式的高考一轮复习课的逻辑,有学生给我拍了份今天河西区高一刚考的统考试卷,看了下卷子本身,因为天津的高一高二也是刚刚恢复线下授课,所以试卷难度整体偏低,除了最后的解答题稍有一定的计算量外,基本没有什么难题。但是这张试卷中的选择题第7题倒是引起了我的兴趣,这道题目如下:

7. 设

是两个概率大于
的随机事件,则下列论述正确的是( )

A. 事件

,则

B. 若

互斥,则
一定相互独立

C. 若

相互独立,则
一定不互斥

D.

这道题目的A、D两个选项的错误相信同学们都能轻易的判断出来,不做解释;但是相信会有不少同学对于这道题目的B、C两个选项拿不定主意。

首先说明这道题目的答案,C选项是正确的,B选项是错误的。这道题目考察了各位同学对于事件的三种关系互斥、对立和独立的理解和判断,而且重点考察的是很多同学比较模糊的互斥和独立之间的关系。在这里也通过这道题帮大家梳理下这三种关系的概念及关系。


互斥、对立、独立的定义

在分析其三者的区别与联系之前,我们必然需要先对这三者本身有所了解。

  • 对于一个随机试验的两个事件
    而言,如果事件
    与事件
    不能同时发生,也就是说
    是一个不可能事件,即
    ,则称事件
    与事件
    互斥(或互不相容)。

b05454a8b5872dd64f38397610eb2c86.png
互斥事件关系图
  • 如果事件
    和事件
    在任何一次试验中有且仅有一个发生,即
    ,且
    ,那么称事件
    与事件
    互为对立。我们把事件
    的对立事件记为

fd9d369645f76156af2942b7c87e373a.png
对立事件关系图
  • 对于任意两个事件
    ,如果
    成立,则称事件
    与事件
    相互独立,简称为独立
关于独立事件,新老教材的引入方式是不同的,老教材通过条件概率公式推导了独立事件的判断公式;新教材中删除了关于条件概率的部分,直接为大家介绍了事件独立的定义。

下面通过大家最熟悉的掷骰子这个随机试验分别举出三种关系下事件的例子:

  • 事件
    为掷一枚骰子得到点数为5,事件
    为掷一枚骰子得到点数为3,这两个事件在一次随机试验中不可能一起发生,事件
    与事件
    为互斥事件;
  • 事件
    为掷一枚骰子得到点数为奇数,事件
    为掷一枚骰子得到点数为偶数,同样,不难看出这两个事件在一次随机试验中不可能一起发生,故事件
    与事件
    为互斥事件;更进一步,我们发现,事件
    与事件
    的并事件包含了掷一枚骰子会发生的全部样本点,故这二者也同时为对立事件;
  • 事件
    为掷一枚骰子两次,其中第一次得到点数为奇数,事件
    为掷一枚骰子两次,其中第二次得到点数为奇数,这里我们列举样本空间,采用古典概型计算概率的方法,不难看出这两个事件满足
    ,故事件事件
    与事件
    为独立事件。

用通俗的话去解释这三种事件间的关系就是:

  • 如果两个事件没法一起发生,则二者一定为互斥事件;
  • 如果两个事件没法一起发生,且二者所包含的情况取并集是整个试验的全部可能情况,这两点同时满足的是对立事件;
  • 如果两个事件的发生是彼此没有关系的,一个事件是否发生对与另外一个事件是否发生是不会造成影响的,此时其二者为独立事件。

互斥、对立、独立的关系

到现在为止,我们已经清楚了这三者自身的定义,下面我们来探讨下这三者之间的关系。

  • 互斥与对立的关系相信多数同学已经熟记于心,从上面的案例我们也不难发现,对立关系应该为互斥关系的子集,即“互斥不一定独立,独立一定互斥”。这一点不作过多解释。

但是互斥与独立之间的关系呢?很多同学往往忽略这二者间的关系,这确实也情有可原。

因为在实际的问题中,当我们谈论互斥事件时,往往讨论的是一次试验下会发生的两种情况,像是掷骰子一次得到的点数是奇数还是偶数。

当我们谈论独立事件时,往往讨论的是不同次试验的结果,如掷硬币两次,第一次为正面和第二次为正面是相互独立的,或是做同样一件事,甲和乙独立做,两人是否成功是相互独立的。

这两种事件间的关系看起来没什么联系,但是我们仔细考虑下就会发现:

如果两个事件是互斥事件,那么一个事件若发生,另外一个事件就不会发生,按照我们对于独立事件的理解,说明这二者应该是非独立事件。

反过来,如果两个事件是独立事件,如事件

为掷硬币第一次得到正面,事件
为掷硬币第二次得到反面朝上,不难看出事件
是由“正正、正反”两个基本点组成的,而事件
是由“正反、反反”两个基本点组成的,二者的基本点之间有公共元素,所以二者为非互斥事件。
  • 通过以上分析,我们不难得出一个结论:对于两个发生概率不为0的事件而言,互斥定非独立,独立定非互斥

下面我们通过计算来严格证明一下我们刚刚得到的结论。

  • 如果事件
    或事件
    发生的概率都不为0,且
    互斥,那么
    ,即
    ,而
    ,因此
    ,即
    不独立。
  • 如果事件
    或事件
    发生的概率都不为0,且
    独立,则有
    。我们可以利用反证法:假设
    互斥,则
    ,那么
    ,又∵根据题设,
    ,则
    ,产生矛盾。因此若
    独立,则
    不互斥。

到此,我们证明了我们的结论,接下里通过一个知识框图梳理下我们到目前的逻辑:

75c4f25c702b2a4b16c6d1d50987a151.png

补充:特殊情况

可能有同学发现我们的结论中是:对于两个发生概率不为0的事件而言,互斥定非独立,独立定非互斥

为什么在这里要强调概率不为0呢?因为必然事件和不可能事件是否发生是已经确定的事,不受任何其他事物影响,所以必然事件、不可能事件都是与其他任意事件相独立的。

而又由于不可能事件包含0个样本点,它与其他任何事件都是互斥事件。

所以不可能事件与任何事件既独立,又互斥,是一个单独的特殊情况,我们在这里单独说明。

所以,我们返回头看下这道题目,就会发现在题干中,题目特意指明,

是两个概率大于
的随机事件,这里是有其用意存在的。

到此,我们梳理了这三种大家高中阶段接触的事件之间的关系,其实高中数学中的很多知识内容都需要我们细化去深究,数学中的定义,很多同学觉得枯燥无用,但是概念的准确把握永远是解决问题的基石,需要我们注意。

时间仓促,文中如有疏漏之处大家可在评论区指明,我看到后会进行修正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值