计算机线性回归实验报告,线性回归分析实验报告.doc

PAGE

PAGE 28

数据分析课程实验报告

实验名称 线性回归分析

实验目的

1、通过实验掌握线性回归模型拟合及参数估计

2、获得处理统计推断与预测的能力

3、学会残差分析、掌握Box-Cox变换的方法

4、学会最优回归方程的选取

5、进一步熟悉SAS的应用

二、用文字或图表记录实验过程和结果

2.4解:

sas程序为:

data two_4;

input y x1 x2;

CARDS;

(省略了数据)

;

RUN;

PROC REG DATA=two_4;

model y=x1 x2/I;

OUTPUT OUT=a P=PREDICTED R=RESIDUAL H=H STUDENT=STUDENT;

RUN;

PROC CAPABILITY DATA=a GRAPHICS;

QQPLOT;

RUN;

PROC GPLOT DATA=a;

PLOT RESIDUAL*PREDICTED RESIDUAL*x1 RESIDUAL*x2;

SYMBOL VALUE=DOT I=NONE;

RUN;

PROC IML;

N=15;

USE two_4;

READ ALL VAR{y x1 x2} INTO M;

X=M[,2]#M[,3];

X2=M[,3];

Y=M[,1];

P=Y||X||X2;

CREATE RESOLVE VAR{Y X X2};

APPEND FROM P;

QUIT;

PROC REG DATA=RESOLVE;

MODEL Y=X X2;

RUN;

PROC PRINT;

RUN;(1)参数估计的sas输出结果为:

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 3.45261 2.43065 1.42 0.1809

x1 1 0.49600 0.00605 81.92 <.0001>

x2 1 0.00920 0 9.50 <.0001>

分析:参数的估计值为3.4526、0.49600、0.00920误差方差的估计值=MSE= 4.74030,由此输出结果得到回归方程为:=3.4526+0.49600X1+0.00920X2从参数估计的sas输出结果中的最后一列p值可知,该城市中适合使用该化妆品的人数X1以及他们的与收入X2对化妆品在该城市的月销售量Y有显著影响,当适合使用该化妆品人的收入X2固定时,该城市中适合使用该化妆品的人数X1每增加一人,此化妆品的月销售量将增加0.49600个单位;同理当该城市中适合使用该化妆品的人数X1固定时,他们的收入X2增加一单位时,月销售量增加0.00920个单位;

(2)插入方差分析表:

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 53845 26922 5679.47 <.0001>

Error 12 56.88357 4.74030

Corrected Total 14 53902

分析:线性回归关系显著性检验:统计量的观测值F0=5679.47检验的p值p0=PH0(F>=F0)<0.0001。并且在方差分析表中,还输出了R2,即R2 =SSR/SST=53845/53902=0.9989其中R2值接近于1.,这些结果说明了Y与X1,X2之间的线性回归关系是显著的。

(3)=0.05,由于(n-p)=t0.975 (12)=0.128,利用中参数估计值可求得的置信度为95%的置信区间为分别为:

:3.45261+-2.43065*0.128即(3.1414868,3.7637332)

:0.49600+-0.00605*0.128即(0.37405,0.4967744)

:0.00920+-00.128即(0.00907608192,0.009323

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值