PAGE
PAGE 28
数据分析课程实验报告
实验名称 线性回归分析
实验目的
1、通过实验掌握线性回归模型拟合及参数估计
2、获得处理统计推断与预测的能力
3、学会残差分析、掌握Box-Cox变换的方法
4、学会最优回归方程的选取
5、进一步熟悉SAS的应用
二、用文字或图表记录实验过程和结果
2.4解:
sas程序为:
data two_4;
input y x1 x2;
CARDS;
(省略了数据)
;
RUN;
PROC REG DATA=two_4;
model y=x1 x2/I;
OUTPUT OUT=a P=PREDICTED R=RESIDUAL H=H STUDENT=STUDENT;
RUN;
PROC CAPABILITY DATA=a GRAPHICS;
QQPLOT;
RUN;
PROC GPLOT DATA=a;
PLOT RESIDUAL*PREDICTED RESIDUAL*x1 RESIDUAL*x2;
SYMBOL VALUE=DOT I=NONE;
RUN;
PROC IML;
N=15;
USE two_4;
READ ALL VAR{y x1 x2} INTO M;
X=M[,2]#M[,3];
X2=M[,3];
Y=M[,1];
P=Y||X||X2;
CREATE RESOLVE VAR{Y X X2};
APPEND FROM P;
QUIT;
PROC REG DATA=RESOLVE;
MODEL Y=X X2;
RUN;
PROC PRINT;
RUN;(1)参数估计的sas输出结果为:
Parameter Estimates
Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 3.45261 2.43065 1.42 0.1809
x1 1 0.49600 0.00605 81.92 <.0001>
x2 1 0.00920 0 9.50 <.0001>
分析:参数的估计值为3.4526、0.49600、0.00920误差方差的估计值=MSE= 4.74030,由此输出结果得到回归方程为:=3.4526+0.49600X1+0.00920X2从参数估计的sas输出结果中的最后一列p值可知,该城市中适合使用该化妆品的人数X1以及他们的与收入X2对化妆品在该城市的月销售量Y有显著影响,当适合使用该化妆品人的收入X2固定时,该城市中适合使用该化妆品的人数X1每增加一人,此化妆品的月销售量将增加0.49600个单位;同理当该城市中适合使用该化妆品的人数X1固定时,他们的收入X2增加一单位时,月销售量增加0.00920个单位;
(2)插入方差分析表:
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 53845 26922 5679.47 <.0001>
Error 12 56.88357 4.74030
Corrected Total 14 53902
分析:线性回归关系显著性检验:统计量的观测值F0=5679.47检验的p值p0=PH0(F>=F0)<0.0001。并且在方差分析表中,还输出了R2,即R2 =SSR/SST=53845/53902=0.9989其中R2值接近于1.,这些结果说明了Y与X1,X2之间的线性回归关系是显著的。
(3)=0.05,由于(n-p)=t0.975 (12)=0.128,利用中参数估计值可求得的置信度为95%的置信区间为分别为:
:3.45261+-2.43065*0.128即(3.1414868,3.7637332)
:0.49600+-0.00605*0.128即(0.37405,0.4967744)
:0.00920+-00.128即(0.00907608192,0.009323