《机器学习》实验一:线性回归

《机器学习》实验一:线性回归

实验目的

  1. 掌握线性回归的基本原理;
  2. 掌握线性回归的求解方法;
  3. 掌握梯度下降法原理;
  4. 掌握最小二乘法。

实验原理

1. 线性回归

线性回归的任务是找到一个从输入特征空间X到输出特征空间Y的最优的线性映射函数简单来说给定d个属性描述的示例x=(x1,x2,…,xd),其中xi表示x在第i个属性上的取值。线性模型试图学到通过属性的线性组合来进行预测的函数,即:

在这里插入图片描述

写成向量形式:

在这里插入图片描述

其中,w=(w1,w2,…,wd),wT表示w的转置。
我们可以使用均方误差确定w和b,均方误差是回归任务中最常用的性能度量,我们试图通过均方误差最小来求解w和b,即:

在这里插入图片描述

我们称上式为代价函数或损失函数,我们只需要使代价函数最小即可。

2. 梯度下降法

函数沿着导数方向是变化最快的,为了更快的达到优化目标,沿着负梯度方向搜寻w,b使得代价函数最小,即使用梯度下降法更新权重即可求出w和b。
梯度就是多元函数的偏导数,我们求出代价函数对w,b的偏导数,即:

在这里插入图片描述

沿着负梯度方向搜寻w,b使得代价函数最小,即使用梯度下降法更新权重:

在这里插入图片描述

η为学习率,随机初始化w,b,通过不断地迭代上述2个更新公式计算w,b的最优值。

3. 最小二乘法

使用最小二乘法求解w,b,即令代价函数对w,b的偏导数为0,这种基于均方误差进行线性模型求解的方法称为最小二乘法。
w,b的计算公式为:

在这里插入图片描述

可以看出最小二乘法是梯度下降法的一种特殊情况,很多函数解析不出导数等于零的点,梯度下降法是求解损失函数参数更常用的方法。

实验内容

  1. 准备数据,np.random,rand()产生一组随机数据x,根据y=wx+b,产生数据y,并用np.random.rand()添加随机噪声,y=wx+b+噪声,得到数据集(x,y);
  2. 建立线性模型,y_pre=wx+b;
  3. 采用均方误差,构建损失函数;
  4. 训练模型,梯度下降法进行优化权重求解w和b;
  5. 直接使用最小二乘法求解w和b,并与梯度下降法求解的w和b进行比较;
  6. 绘制样本点,预测直线。

实验器材

处理器:Intel® Core™ i5-8300H CPU @ 2.30GHz
Python 3.9.0
matplotlib 3.6.1
numpy 1.23.4
scipy 1.9.3

实验步骤

1. 随机生成数据集

使用np.arange()产生0到10、步长为0.2的数据x,再生成与x相同长度的全1向量,两者行叠加再转置得到(1,w^T),记为input_data。设置w和b,令y=wx+b+random噪声,记为target_data。input_data和target_data组成数据集。代码如下:

# 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T
w = 2
b = 5
target_data = w * x + b + np.random.randn(m)

2. 梯度下降法

设学习率η=0.001,随机初始化w和b,设(b,w)T向量为theta。沿着负梯度方向搜寻w,b使得代价函数最小。在每次循环中,更新w,b的值,并打印。当循环次数超过设定最大次数或w和b达到收敛条件时,退出循环。代码如下:

# 终止条件
loop_max = 1e4  # 最大迭代次数
epsilon = 1e-3  # 收敛条件最小值

# 初始化权值
np.random.seed(0)
theta = np.random.randn(2)
alpha = 1e-3  # 步长,也叫学习率
diff = 0.
error = np.zeros(2)
count = 0  # 循环次数
finish = 0  # 终止标志

# 迭代
while count < loop_max:
    count += 1
    # 在标准梯度下降中,权值更新的每一步对多个样例求和,需要更多的计算
    sum_m = np.zeros(2)
    for i in range(m):
        diff = (np.dot(theta, input_data[i]) - target_data[i]) * input_data[i]
        # 当alpha取值过大时,sum_m会在迭代过程中会溢出
        sum_m = sum_m + diff
    # 注意步长alpha的取值,过大会导致振荡
    theta = theta - alpha * sum_m
    # 判断是否已收敛
    if np.linalg.norm(theta - error) < epsilon:
        finish = 1
        break
    else:
        error = theta
    # 打印迭代次数、更新后的w和b
    print('迭代次数 = %d' % count, '\t w:', theta[1], '\t b:', theta[0])

print('迭代次数 = %d' % count, '\t w:', theta[1], '\t b:', theta[0])

3. 最小二乘法

使用Python第三方库——scipy中的统计模块——stats中的linregress()计算两组测量值x和target_data的线性最小二乘回归。代码如下:

# 用scipy线性最小二乘回归进行检查
slope, intercept, r_value, p_value, slope_std_error = stats.linregress(x, target_data)
print('使用最小二乘法计算,斜率 = %s 截距 = %s' % (slope, intercept))

4. 绘图

使用Python第三方库——matplotlib中的plot()进行绘图。样本点用蓝色星形点表示,梯度下降法得到的预测直线用红色实线表示,而最小二乘法得到的预测直线用绿色实线表示。代码如下:

# 用plot进行展示
plt.scatter(x, target_data, color='b', marker='*')
# 梯度下降法
plt.plot(x, theta[1] * x + theta[0], label='gradient descent', color='red')
# 最小二乘法
plt.plot(x, slope * x + intercept, label='least square', color='green')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('Experiment 1: Linear regression')
plt.savefig('result.png')
plt.show()

5. 实验结果对比

编写好代码后,运行代码。运行的部分结果如图1所示。

在这里插入图片描述

图1 程序运行部分结果

实验生成的result.png如图2所示。其中,蓝色的星形点是样本点,红色实线是由梯度下降法得到的预测直线,而绿色实线是由最小二乘法得到的预测直线。

在这里插入图片描述

图2 result.png

在本次实验中,预设的斜率w=2,截距b=5。从图1中我们可以看出,由梯度下降法计算得到的w=1.9942891844189052,b=4.867005761935533;而由最小二乘法计算得到的w=1.9825810475525898,b=4.943677927448151。可以看出,无论是梯度下降法还是最小二乘法,都非常逼近w和b的预设值。从图2中我们也可以看出,梯度下降法和最小二乘法几乎重合,都很好地实现了对样本点的拟合。

心得体会

本实验实现了梯度下降法进行线性回归,并通过最小二乘法验证了结果的正确性。通过此次实验,很好地掌握了线性回归、梯度下降法和最小二乘法的原理,熟悉了Python第三方库——numpy、matplotlib和scipy的一些简单函数的使用。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UestcXiye

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值