dataframe for循环_Pandas 中如何遍历数据集(for 循环和 apply 函数对比)

v2-7d43b6f042078b56e464f863678e75b5_1440w.jpg?source=172ae18b

以一个小数据集为例:

v2-2d9ce9b9350cfca0aa6facb8fe39cbad_b.jpg
数据集示例

我们想要实现的需求是:将 df 中价格小于 10 的水果价格翻倍。

1. for 循环

做到这个项目的同学都有一定的 Python 编程基础,想到遍历,可能最先想到的就是使用 for 循环:

df1 

2. 对 dataframe 数据集使用 apply

axis=1 相当于对 df 中的每一行数据进行函数调用,apply_func 函数的参数是每一行数据

df2 

3. 对数据集中的列 Series 对象使用 apply

此时函数内的参数 cost 就是每一个价格

df3 

4. 结合匿名函数 lambda 使用 apply

当需要实现的函数功能非常简单时,可以直接使用匿名函数:

df4 

更多相关文章推荐

  • Python遍历pandas数据方法总结
  • Pandas初学者代码优化指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值