mysql 基于时间分区_MySQL基于时间字段进行分区的方案总结

MySQL支持的分区类型一共有四种:RANGE,LIST,HASH,KEY。其中,RANGE又可分为原生RANGE和RANGE COLUMNS,LIST分为原生LIST和LIST COLUMNS,HASH分为原生HASH和LINEAR HASH,KEY包含原生KEY和LINEAR HASH。关于这些分区之间的差别,改日另写文章进行阐述。

最近,碰到一个需求,要对表的时间字段(类型:datetime)基于天进行分区。于是遍历MySQL官方文档分区章节,总结如下:

实现方式

主要是以下几种:

1. 基于RANGE

2. 基于RANGE COLUMNS

3. 基于HASH

测试数据

为了测试以上三种方案,特构造了100万的测试数据,放在test表中,test表只有两列:id和hiredate,其中hiredate只包含10天的数据,从2015-12-01到2015-12-10。具体信息如下:

mysql> show create table testG

*************************** 1. row ***************************

Table: test

Create Table: CREATE TABLE `test` (

`id` int(11) DEFAULT NULL,

`hiredate` datetime DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

mysql> select min(hiredate),max(hiredate) from test;

+---------------------+---------------------+

| min(hiredate) | max(hiredate) |

+---------------------+---------------------+

| 2015-12-01 00:00:00 | 2015-12-10 23:59:56 |

+---------------------+---------------------+

1 row in set (0.44 sec)

mysql> select date(hiredate),count(*) from test group by date(hiredate);

+----------------+----------+

| date(hiredate) | count(*) |

+----------------+----------+

| 2015-12-01 | 99963 |

| 2015-12-02 | 100032 |

| 2015-12-03 | 100150 |

| 2015-12-04 | 99989 |

| 2015-12-05 | 99908 |

| 2015-12-06 | 99897 |

| 2015-12-07 | 100137 |

| 2015-12-08 | 100171 |

| 2015-12-09 | 99851 |

| 2015-12-10 | 99902 |

+----------------+----------+

10 rows in set (0.98 sec)

测试的维度

测试的维度主要从两个方面进行,

一、分区剪裁

针对特定的查询,是否能进行分区剪裁(即只查询相关的分区,而不是所有分区)

二、查询时间

鉴于该批测试数据是静止的(即没有并发进行的insert,update和delete操作),数据量也不太大,从这个维度来考量貌似意义也不是很大。

因此,重点测试第一个维度。

基于RANGE的分区方案

在这里,选用了TO_DAYS函数

CREATE TABLE range_datetime(

id INT,

hiredate DATETIME

)

PARTITION BY RANGE (TO_DAYS(hiredate) ) (

PARTITION p1 VALUES LESS THAN ( TO_DAYS('20151202') ),

PARTITION p2 VALUES LESS THAN ( TO_DAYS('20151203') ),

PARTITION p3 VALUES LESS THAN ( TO_DAYS('20151204') ),

PARTITION p4 VALUES LESS THAN ( TO_DAYS('20151205') ),

PARTITION p5 VALUES LESS THAN ( TO_DAYS('20151206') ),

PARTITION p6 VALUES LESS THAN ( TO_DAYS('20151207') ),

PARTITION p7 VALUES LESS THAN ( TO_DAYS('20151208') ),

PARTITION p8 VALUES LESS THAN ( TO_DAYS('20151209') ),

PARTITION p9 VALUES LESS THAN ( TO_DAYS('20151210') ),

PARTITION p10 VALUES LESS THAN ( TO_DAYS('20151211') )

);

插入数据并查看特定查询的执行计划

mysql> insert into range_datetime select * from test;

Query OK, 1000000 rows affected (8.15 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from range_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| 1 | SIMPLE | range_datetime | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400061 | Using where |

+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+

1 row in set (0.03 sec)

注意执行计划中的partitions的内容,只查询了p7,p8,p9,p10三个分区,由此来看,使用to_days函数确实可以实现分区裁剪。

基于RANGE COLUMNS的分区方案

RANGE COLUMNS可以直接基于列,而无需像上述RANGE那种,分区的对象只能为整数。

创表语句如下:

CREATE TABLE range_columns (

id INT,

hiredate DATETIME

)

PARTITION BY RANGE COLUMNS(hiredate) (

PARTITION p1 VALUES LESS THAN ( '20151202' ),

PARTITION p2 VALUES LESS THAN ( '20151203' ),

PARTITION p3 VALUES LESS THAN ( '20151204' ),

PARTITION p4 VALUES LESS THAN ( '20151205' ),

PARTITION p5 VALUES LESS THAN ( '20151206' ),

PARTITION p6 VALUES LESS THAN ( '20151207' ),

PARTITION p7 VALUES LESS THAN ( '20151208' ),

PARTITION p8 VALUES LESS THAN ( '20151209' ),

PARTITION p9 VALUES LESS THAN ( '20151210' ),

PARTITION p10 VALUES LESS THAN ('20151211' )

);

插入数据并查看上述查询的执行计划

mysql> insert into range_columns select * from test;

Query OK, 1000000 rows affected (9.20 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from range_columns where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+

| 1 | SIMPLE | range_columns | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400210 | Using where |

+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+

1 row in set (0.11 sec)

同样,使用该分区方案也实现了分区剪裁。

基于HASH的分区方案

因HASH分区对象同样只能为整数,所以我们无法像上述RANGE COLUMNS那种直接引用列,在这里,同样用了TO_DAYS函数进行转换。

创表语句如下:

CREATE TABLE hash_datetime (

id INT,

hiredate DATETIME

)

PARTITION BY HASH( TO_DAYS(hiredate) )

PARTITIONS 10;

插入数据并查看上述查询的执行计划

mysql> insert into hash_datetime select * from test;

Query OK, 1000000 rows affected (9.43 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from hash_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+

| 1 | SIMPLE | hash_datetime | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | ALL | NULL | NULL | NULL | NULL | 1000500 | Using where |

+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+

1 row in set (0.00 sec)

不难看出,使用hash分区并不能有效的实现分区裁剪,至少在本例,基于天的需求中如此。

以上三种方案都是基于datetime的,那么,对于timestamp类型,又该如何选择呢?

事实上,MySQL提供了一种基于UNIX_TIMESTAMP函数的RANGE分区方案,而且,只能使用UNIX_TIMESTAMP函数,如果使用其它函数,譬如to_days,会报如下错误:“ERROR 1486 (HY000): Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed”。

而且官方文档中也提到“Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)”。

下面来测试一下基于UNIX_TIMESTAMP函数的RANGE分区方案,看其能否实现分区裁剪。

针对TIMESTAMP的分区方案

创表语句如下:

CREATE TABLE range_timestamp (

id INT,

hiredate TIMESTAMP

)

PARTITION BY RANGE ( UNIX_TIMESTAMP(hiredate) ) (

PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-02 00:00:00') ),

PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-03 00:00:00') ),

PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-04 00:00:00') ),

PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-05 00:00:00') ),

PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-06 00:00:00') ),

PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-07 00:00:00') ),

PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-08 00:00:00') ),

PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-09 00:00:00') ),

PARTITION p9 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-10 00:00:00') ),

PARTITION p10 VALUES LESS THAN (UNIX_TIMESTAMP('2015-12-11 00:00:00') )

);

插入数据并查看上述查询的执行计划

mysql> insert into range_timestamp select * from test;

Query OK, 1000000 rows affected (13.25 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from range_timestamp where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| 1 | SIMPLE | range_timestamp | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400448 | Using where |

+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+

1 row in set (0.00 sec)

同样也能实现分区裁剪。

总结:

1. 经过对比,个人倾向于第二种方案,即基于RANGE COLUMNS的分区实现。

2. 在5.7版本之前,对于DATA和DATETIME类型的列,如果要实现分区裁剪,只能使用YEAR() 和TO_DAYS()函数,在5.7版本中,又新增了TO_SECONDS()函数。

3. 其实LIST也能实现基于天的分区方案,但在这个需求上,相比于RANGE,还是显得很鸡肋。

4. TIMESTAMP类型的列,只能基于UNIX_TIMESTAMP函数进行分区,切记!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值