判断该分解是否保持函数依赖性_近十年高考数学导数大题分析,附7种函数构造方法...

97b449615181d36830c5f7c16a711f48.png

今天,橙子老师为大家分享近十年高考数学导数大题分析,这 7 种函数构造方法能帮助你快速解决导数难题!建议收藏起来,以便随时学习哦~

833fcbac140afb897f5cd71d2051f6f7.png

题型一:讨论含有参数函数的单调性

下面四道题都与lnx、e^x有关,与e^x结合的函数出现的更多一些。

①2018全国Ⅰ卷导数题,与lnx相关,解题时首先考虑定义域,而且求导通分后,分子为二次函数,讨论的形式相对多一些,难一些;

②2017全国Ⅰ卷导数题,要求学生要会因式分解,然后再讨论参数,之后的讨论与2012年题型相似;

③2015全国Ⅱ卷导数题,需合并同类项,由于是证明题,结合区间讨论参数,还可以进行二次求导发现f'(x)为增函数,然后再讨论,更容易处理;

④2012新课标,这是全国卷在2010年以来第一次在第一问出现含参数讨论单调性导数题,这道题还算简单,相对容易接受。

92fe42b69130107468658fd14d47db9a.png

通过以上分析,我们发现含参数讨论问题更多是与e^x及lnx结合,有分子二次函数型(参考定义域),因式分解型,二次求导型,单根单调型(如④)。

希望这样的分析能对高三复习有所帮助,搞定导数第一问就不要漏掉这几种题型。

题型二:含参数讨论单调性求极值最值

本题型在是在题型一基础上又进一求极值最值,难度又进一步加大。对学生的分类讨论,理解分析能力要求比较高。2017年的两道导数题,如出一辙,同一个模板,对于中等生来讲并不简单,且2卷难度稍微大一点点。

2016年导数难度也是比较大,尤其在问法上又不是特别明确,所以,在复习备考时我们应该对含参数讨论求极值最值这样的知识点练习到位,争取在导数的第一问上拿到满分。

9fbb3789e464d904b42540ae9e9ec37d.png

题型三:直接讨论函数单调性

按正常来讲,不含参数讨论函数单调性应该是比较简单,但是如下的五道题并非绝对的送分题。

2018年的两道导数题以及2013年导数题均需要二次求导,且2018年两道题需要求最值;

2016年导数题及2010年导数题需要因式分解,而2016年导数题需要求最值,且这样的问法,会让很多考生不容易看出是求最值;

所以,不含参数的导数题还是比较难的,训练时需要夯实基础,对导数解答题的一条线(①原函数,②导函数(直接看不出来则二阶导)③单调区间④求极值最值)了如指掌。

473e051a4435d34b1596e752b6711028.png

2a4e5fd91677d1e173cf7cacb8225b2d.png

题型四:切线问题

对考生来讲,导数题第一问求与切线方程有关问题是最简单的,但是近三年都没有考过。而且2015年的切线题稍微难了一点。

0b3faa1285c35bce45015605599cf9fc.png

导数题第一问备考建议

①切线方程相关问题;

②结合定义域直接(及含参数)求单调区间;

③求极值最值;

④求二阶导意识(尤其是带有e^x的函数);

⑤加强因式分解,合并同类项能力。

千万不要认为对于导数题,很多孩子都可以得4分。仔细分析,并非易事。我们要从学生的角度思考问题,培养孩子做导数题“一条线”能力。

a893d1b6b8f42a3d7b64eca2c978d062.png

*(1)求函数中某参数的值或给定参数的值求导数或切线

一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:

先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:

①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。

*(2)求函数的单调性或单调区间以及极值点和最值

一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:

首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。

极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。

最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。

注意:

①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。

②分类要准,不要慌张。

③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。

*(3)恒成立或在一定条件下成立时求参数范围

这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:

做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。

分离变量后,就要开始求分离后函数的最大或者最小值,那么这里就要重新构建一个函数,接下来的步骤就和(2)中基本相同了。

注意:

①分离时要注意不等式的方向,必要的时候还是要讨论。

②要看清是求分离后函数的最大值还是最小值,否则容易搞错。

③分类要结合条件看,不能抛开大前提自己胡搞一套。

最后,这类题还需要一定的不等式知识,比如均值不等式,一些高等数学的不等数等等。这就需要我们有足够的知识储备,这样做起这样的题才能更有效率。

(4)零点问题

这类题目在选择填空中更容易出现,因为这类问题虽然不难,但要求学生对与极值和最值问题有更好的了解,它需要我们结合零点,极大值极小值等方面综合考虑,所以更容易出成填空题和选择题。如果出成大题,大致方法如下:

先求出函数的导函数,然后分析求解出函数的极大值与极小值,然后结合题目中所给的信息与条件,求出在特定区间内,极大值与极小值所应满足的关系,然后求解出参数的范围。

(5)同时,也很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.

解决此类问题的关键就是怎样合理构造函数,以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考。

e1a0ec583d8bdbd0e0c1eb036493fdd7.png

一、作差构造法

5be4238dfb13557b3891b2120e78cf11.png

1.直接作差构造

851aba73c784c7ed5ff36d0139692e7b.png

76aed7ca608865f33fb69e39d00263cc.png

fbf76798035ffe03be44de92f1024f10.png

63a3cf984b8c2fda0b92c234f63c3268.png

14f984bf23ec0feeb2499fb0b650af83.png

评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.

2.变形作差构造

5b1f3a64fbffa698ac01e2e3804492b8.png

a30ef1241485cb0316f9b57a1c032dc3.png

eb3fb1c4436b980ad13af66c67e35bce.png

6b7e2b372fc469cc32c8f765d97a1be8.png

二、分离参数构造法

分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.

614e7bb3f37efbecdfb3022974b47982.png

8e3746e89e9aa8203f2b4df253979302.png

6d5d3e6843f14085def37ee353ea0cab.png

99496a29077a61d5e8af9dbfd7046b97.png

912ea3c445757a599c3c4e7362021a11.png

三、局部构造法 

58c8c0d431d89fa8f0393a7d3fb62667.png

1.化和局部构造

46c0e51078f071a28ea0df1bfeec5cd1.png

c3f04653d86a58ecb2e22e61417523dc.png

de3d874c94fe17e445ab10fc91680cc0.png

2.化积局部构造

acf282d3af91e2d5aa402b30866bc961.png

4fcc8d4a3527a2005c76c247d5f93410.png

ed67245f027d0b53e1e2b7cc271d602d.png

bed5384be9612e5225b0599420b3f609.png

99838f501f982036cf3d14fb6cfc0acf.png

b2594e1ba69c799434b18188100a727a.png

四、换元构造法

换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.

d330564903e67a42e8283b43d9306e91.png

7353e96d719d8a1a5cb2df9e907ff511.png

62bf03547d682627e53bbcea63e7285f.png

3315fe9b43754ab7ddb0baa60bc93c86.png

24850e6766650a279a4d1f9ecec42319.png

5f080614e30367ab3a3a46906e0ba3cf.png

评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.

五、主元构造法

主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.

4afade31fb75ff1db3e55ef4b38e35c1.png

07841c8603967c9a79e17a3f40ae6d8e.png

5886d9b8001de8b4e9c522f198f4d617.png

0343f56dc6dba7d3d658861d568ca88c.png

22a4991d06c1aec053cb08b19c253ae1.png

fceabdbec65bdc9396716e76c708a76b.png

31b47315dc8a2906440700eed42852c8.png

六、特征构造法

1.根据条件特征构造

ce76ebc95bb550a458a894b35e989928.png

66b4c2d6e2f1be890f44abd3a24a950e.png

2.根据结论特征构造

49400f9d120ef1d0b0311c0dddc64355.png

1f1840fc2899686f83fde4fb79499f34.png

f81cb5ff4cdc6bbe1b815d1d0eb482cc.png

a70a811873de9a9226ea071fd7baf6b4.png

a800508e30450b0370716ac867e147b7.png

04ced17aa46fe3b9be960ce629be1001.png

七、放缩构造法

a1127dc9965c9c837ec298906c08c21a.png

1.由基本不等式放缩构造

5547e3e78eca700cc57a6a9fa3ed6e71.png

d8176127e86f449dd9777ed90507a74f.png

5fabd0502a334e52d266f04216b93194.png

1b35e24e5a001222996bce3daf1ab57b.png

829805a27b3fa75337405f24d9112d61.png

cac56818e09e86a9e8cde715b80ebcfe.png

2.由已证不等式放缩构造

0b233b34e91a92b4531bbee62b35d9a3.png

67ec56a020f7fc8ac0a09785cac6a52d.png

3c93b3d744406f0adfae273b9f62ffcb.png

ccb5435e6314e933cc0c20c185c7493e.png

197f6516acf8a9af1a258f6cd471c3fe.png

cb7b3c23b10ee8961ebf9136f4ad63ad.png

评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;

若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力。

文章综合整理自高中生学习,如有侵权,联系删除。

baa049058fb6b37d15fbacb3fd746d8d.gif

【公众号内回复下方关键词】

领神秘资料大礼包

衡中| 冲刺| 导图

3a4ffc04bdc918e962953d8c1ef2827b.png

·往期阅读推荐·

· 近十年高考数学导数大题分析

· 高考数学“无耻”得分法,只能帮你们到这了...

· 为什么一定要拼尽全力去高考?看完此篇,我哭了!

· 高考数学必考知识点+解题方法全汇总,不看别后悔!

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值