基于MATLAB的柔性机械臂动力学分析
学兔兔
第1期(总第194期) 机 械 工 程 与 自 动 化 NO.1
2016年 2月 MECHANICAI ENG1NEERING & AUT0MATI()N Feb.
文章编号:1672—6413(2016)01—0033一O4
基于MATLAB的柔性机械臂动力学分析
卫玉昆,焦国太
(中北大学 机电_T-程学院,山西 太原 030051)
摘要:针对柔性机械臂系统,通过有限元法 (FEM)和Lagrange方程相结合的方法建立柔性机械臂的动力
学模型,然后通过数学软件MATI AB对数学符号的处理,描述了柔性机械臂单臂系统的动态特性,考虑了
载荷和摩擦等非线性因素的影响,为柔性机械臂的机械设计、控制设计等方面奠定了理论基础。
关键词:柔性机械臂;MATLAB;动力学分析
中图分类号:TP391.7:TH165 文献标识码:A
0 引言 1 建模方法
随着工作环境的要求越来越高,质量笨重、功耗 因为柔性机械臂臂杆的截面相对于其长度来说很
高、功能单一、负重比低的传统工业机器人已经不能满 小,因此,我们将柔性杆看做梁结构,忽略轴向变形和
足各个领域对机械臂的要求,相应地,柔性机械臂具有 剪切变形的影响,仅考虑弯曲变形。那么一个柔性机
重量轻、成本低、能耗低、负重比大、工作容积大等优 械臂系统就是具有无限个自由度的连续组合,如果再
点,可以弥补传统工业机器人的不足。 加上柔性关节和柔性臂杆变形的耦合,整个系统的运
对于刚性机械臂来说,它产生的振动很小(可以忽 动控制方程就是多个高度非线性的偏微分方程,这些
略不计),因此我们只要通过对驱动系统的控制就可以 问题显然都不易求解且容易出错。所以我们将整个无
很方便地精确定位。但柔性机械臂与刚性机械臂不 限个自由度的系统转换成有限个自由度系统,这就是
同,它由于臂杆和关节柔性特性的影响,在进行刚性运 我们常说的有限元法(FEM)E8]。如果将柔性机械臂
动时会不可避免地伴随着自身的振动,从而导致很难 臂杆看做梁结构,那么柔性机械臂系统的动力学问题
完成准确的定位,严重影响了柔性机械臂的设计和使 就可以转换成梁结构的挠度和刚性运动的组合问题。
用,大大加大了柔性机械臂建模和控制的难度。因此, 梁的挠度是由多个形函数组成的广义坐标的组合,它
需要对柔性机械臂的动力学模型展开更深入的研究, 的动力学方程可以通过计算广义质量、广义刚度、广义
希望可以从动力学层面考虑以避免或者减少由于其自 力和广义力矩来求得。形函数与有限单元法相关,单
身的振动带来的一系列问题E 引。 元形状越复杂,阶次越高 ]。有限元法(FEM)的实质
在柔性机械臂动力学领域已经有了一些研究成 是把无限多个自由度的连续体离散为有限个自由度的
果,1990年Park和 Imam应用有限元法对柔性系统 单元体,这样我们可以用数值方法进行数值求解,采用
进行研究,后来Turic和 Midha对有限元法进行了改 弹性单元、刚性节点、载荷节点来描述系统模型的质
进,提出了柔性系统动力学分析的广义运动方程E 。 量、刚度、摩擦、载荷等非线性参数,如此就需要比较多
1996年Bellzee提出了柔性旋转梁分别在固定和铰支 的自由度来描述整个系统,这样求解运算量比较
的边界条件下的数学模型r5]。1999年,Tokhi等人提 大l1 ,因此我们在这里借助计