人脸识别 年龄 matlab,基于年龄变化的人脸识别

摘 要:本文基于对数字图像处理问题的研究,建立了图像预处理模型与图像相似度计算模型,同时从轮廓检测与提取和特征识别方面对模型进行了修正。第一,在图像预处理模型中,本文采用Niblack二值化算法对人脸斑点、肤色和皱纹等一些皮肤细节部分进行滤波处理,通过设置阈值来除去皮肤细节等问题,实现对图像特征区域的粗略提取。第二,在边缘检测模型中,本文采用的是高斯滤波和拉普拉斯边缘检测算法相结合的方法,使用高斯—拉普拉斯算子对图像实行边缘检测,通过检测得到进而获取人脸的轮廓。第三,在图像相似度计算中,本文建立了基于SVD奇异矩阵分解的PCA主成分分析模型,实现对图像特征向量的提取,然后采用巴氏距离算法计算人脸轮廓图像相似度。

关键词:Niblack二值化算法;边缘检测;主成分分析;巴氏距离算法

在计算机和多媒体技术高速发展的当今世界,关于人脸识别的问题从来都是很具有研究性的课题。对于一个人从小到大的过程, 如果没有整容的经历, 那么这个人年轻时和年长时的面部总会保留很大的相似性,本文据此特点进行研究分析。

1 图像预处理

Niblack二值化算法可以去除图像中的人脸斑点和皱纹等的干扰,从而能够比较粗略地提取出人脸的特征区域。

该算法的基本原理就是:对于图像中每一个像素点,在它的邻域内,计算出相应的阈值,然后二值化处理。将中心点以及其领域r×r范围内二值化后的结果为b(x,y),g(x,y)为中心点的灰度值,算法过程如下:

(1)首先计算中心坐标r×r范围内均值灰度m(x,y)与标准方差s(x,y),然后根据方差和均值灰度计算出中心点的阈值,如下式

T(x,y)=m(x,y)+k·s(x,y)

(1)

(2)根据均值灰度、标准方差和上式计算的阈值,将中心点二值化可得:

108097481_1.jpg

(2)

接下来把下一个点作为中心点,重复上述步骤,并绘出灰点直方图。幼年期和青年期人脸图像原始灰度图、灰点直方图、Niblack二值化和二值化对比如图1、图2。

108097481_2.jpg

图1

108097481_3.jpg

图2

2 边缘检测与轮廓提取

本文采用将高斯滤波和拉普拉斯边缘检测算法相结合的方法,用高斯—拉普拉斯算子对图像实行边缘检测,实现人脸的轮廓的获取,具体过程如下。

图像的边缘处灰度值函数的拉普拉斯计算为:

▽2f=div(▽

108097481_4.jpg(注:div为散度)

(3)

在图像边缘处,如果f(x,y)的拉普拉斯运算产生零点,即可判断为图像的边缘。在经过边缘检测之后,将提取的轮廓用于下一步相似度求解。

3 相似度求解

在统计中,巴氏距离算法不仅可以测量相似度,还与衡量两个物品之间的重叠量的巴氏系数息息相关。

巴氏距离的定义如下:

DB(p,q)=-ln(BC(p,q)

(4)

其中,BC是巴氏系数,通过巴氏系数可反映出p和q间的巴氏距离,巴氏距离越接近于1,两幅图像的相似度越高。

通过MATLAB得出灰度直方图对比结果如图3所示,可以发现两张图片的灰度直方图分布基本一致。

108097481_5

108097481_6

图3 幼年期与青年期灰度直方图和相似度计算

据此,进一步对两张轮廓照片进行量化,并进行定量求解相似度,重新使用MATLAB求解得结果:HistDist=0.9519。

4 结语

人脸通常是一张图像的重要信息,对于一个人从小到大的过程,如果没有整容的经历,那么这个人年轻时和年长时的面部总会保留很大的相似性,本文所述方法正是利用这一特点实现了基于年龄变化的人脸识别。

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### **2.5 ELM预测**和分类 ##### **2.6 KELM预测**和分类 **2.7 ELMAN预测和分类** ##### **2.8 LSTM预测**和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信继优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>