python椭圆曲线加密算法_椭圆曲线加密中的加法乘法浅析

本文不深入椭圆曲线加密算法的全部知识,只针对椭圆曲线加密中需要用到的加法和乘法计算规则进行浅析。

实际练习中碰到一个比较简单密码学的问题,但是涉及到了椭圆曲线加密算法,题目描述如下:

已知椭圆曲线加密Ep(a,b)参数为

p = 15424654874903

a = 16546484

b = 4548674875

G(6478678675,5636379357093)

私钥为

k = 546768

求公钥K(x,y)

提示:K=kG

这里需要介绍一下椭圆曲线

一般,椭圆曲线可以用以下二元三阶方程的形式来表示:

y² = x³ + ax + b,其中a、b为系数。

它大概的几何形状如下图:

椭圆曲线.png

而本文要介绍的加法和乘法,就是基于这样一个奇怪的几何图形来做到的。

椭圆曲线加法(非有限域):

在椭圆曲线上取一点P(Xp,Yp),再取一点Q(Xq,Yq),连接P、Q两点作一条直线,这条直线将在椭圆曲线上交于第三点G,过G点作垂直于X轴的直线,将过椭圆曲线另一点R(一般是关于X轴对称的点),R点则被定义为P+Q的结果,既P+Q=R:

P+Q=R

当P=Q的情况下,直线将是椭圆曲线在P(Q)点上的切线,而G点是这条切线和曲线的另一个交点,同样,P+Q=R:

P=Q.png

通过上述的图片和文字描述,已经在几何图形上给出了椭圆曲线加法的定义,可是如果要公式化,该如何快速计算呢?

这里只提供快速计算公式,不提供证明,证明可以自己再去解方程组推导一下:

计算P+Q=R

当P!=Q时,两点纵坐标相减的值与横坐标相减的值就是直线的斜率:

λ = (Yq - Yp)/(Xq - Xp)

当P=Q,计算过P(Q)点切线的斜率,既椭圆曲线公式两边求导相除:

λ = (3Xp² + a)/2Yp

斜率计算之后,对点R的坐标进行计算,公式如下:

Xr = (λ² - Xp - Xq)

Yr = (λ(Xp - Xr) - Yp)

通过上述公式,可以快速计算椭圆曲线上任意两点的加法和,这里给出加法实现的python代码:

if P == Q:

aaa=(3*pow(P[0],2) + a)

bbb=(2*G[1])

k=(aaa/bbb)

else:

aaa=(Q[1]-P[1])

bbb=(Q[0]-P[0])

k=(aaa/bbb)

Rx=(pow(k,2)-P[0] - Q[0])

Ry=(k*(P[0]-Rx) - P[1])

椭圆曲线加法(有限域)

实数范围上光滑的椭圆曲线在密码学应用上并不合适,需要进行有限域下的离散化操作才能使用。

离散化示例图.png

现在将上述的椭圆曲线加法计算公式适当修改,以适应有限域下的计算:

当P!=Q时,两点纵坐标相减的值与横坐标相减的值需要与p进行取余操作:

λ = (Yq - Yp)/(Xq - Xp) mod p

当P=Q,计算过P(Q)点切线的斜率,既椭圆曲线公式两边求导相除,结果也需要与p进行取余操作:

λ = (3Xp² + a)/2Yp mod p

斜率计算之后,对点R的坐标进行计算,公式如下:

Xr = (λ² - Xp - Xq) mod p

Yr = (λ(Xp - Xr) - Yp) mod p

通过比较,有限域下的计算只是对结果进行了取余操作,上述公式看起来已经解决了有限域下的椭圆曲线加法。

但是如果在编写代码,计算实际的例子时,有很大可能会得到错误的结果,

其根源在于λ = (Yq - Yp)/(Xq - Xp) mod p或λ = (3Xp² + a)/2Yp mod p在进行取余计算之前,除数和被除数之前可能并不是一个整除的关系。

如:1/4 mod 23,如果直接进行处理,将会得到结果0。

但是在分数求模计算中,是如下定义的:

计算a/b(mod n)

a/b (mod n)=a*b^-1(mod n)

计算1/b mod n

=b^(-1) mod n

就是求y,满足:

yb = 1 mod n

y是有限域F(n)上x的乘法逆元素

简单点说,假设需要求上述的1/4 mod 23,可以转化为1*4(-1次方) mod 23,又可以转化为1*(4和23的乘法逆元) mod 23。

而计算乘法逆元,可以通过拓展欧几里得计算得到,这里对拓展欧几里得不作展开,只提供一个简单算法流程描述:

ExtendedEuclid(d,f)

1 (X1,X2,X3):=(1,0,f)

2 (Y1,Y2,Y3):=(0,1,d)

3 if (Y3=0) then return d'=null//无逆元

4 if (Y3=1) then return d'=Y2 //Y2为逆元

5 Q:=X3 div Y3

6 (T1,T2,T3):=(X1-Q*Y1,X2-Q*Y2,X3-Q*Y3)

7 (X1,X2,X3):=(Y1,Y2,Y3)

8 (Y1,Y2,Y3):=(T1,T2,T3)

9 goto 3

得到乘法逆元后,椭圆曲线上的加法运算计算就简单了,实现Python代码如下:

#coding:utf-8

#欧几里得算法求最大公约数

def get_gcd(a, b):

k = a // b

remainder = a % b

while remainder != 0:

a = b

b = remainder

k = a // b

remainder = a % b

return b

#改进欧几里得算法求线性方程的x与y

def get_(a, b):

if b == 0:

return 1, 0

else:

k = a // b

remainder = a % b

x1, y1 = get_(b, remainder)

x, y = y1, x1 - k * y1

return x, y

#返回乘法逆元

def yunsle(a,b):

#将初始b的绝对值进行保存

if b < 0:

m = abs(b)

else:

m = b

flag = get_gcd(a, b)

#判断最大公约数是否为1,若不是则没有逆元

if flag == 1:

x, y = get_(a, b)

x0 = x % m #对于Python '%'就是求模运算,因此不需要'+m'

#print(x0) #x0就是所求的逆元

return x0

else:

print("Do not have!")

if P == Q:

aaa=(3*pow(P[0],2) + a)

bbb=(2*P[1])

if aaa % bbb !=0:

val=yunsle(bbb,mod)

y=(aaa*val) % mod

else:

y=(aaa/bbb) % mod

else:

aaa=(Q[1]-P[1])

bbb=(Q[0]-P[0])

if aaa % bbb !=0:

val=yunsle(bbb,mod)

y=(aaa*val) % mod

else:

y=(aaa/bbb) % mod

Rx=(pow(k,2)-P[0] - Q[0]) % mod

Ry=(k*(P[0]-Rx) - P[1]) % mod

椭圆曲线乘法

简单介绍完椭圆曲线上定义的加法运算,椭圆曲线上的乘法运算就比较简单了,因为加法可以退化为加法运算,就像算数上的1*3等价与1+1+1。

假设我们需要求2P,则可以化简为P+P=2P

同理,当我们需要求3P时,可以化简为P+2P=3P,其中2P=P+P

最后,我们可以得到规律,当求nP时(n为任意正整数),P+(n-1)P=nP,其中(n-1)P=P+(n-2)P

这样,通过上述介绍的椭圆曲线加法公式,完全可以进行椭圆曲线的乘法计算

以本文开头的题目为例,给出Python代码实现:

#coding:utf-8

#欧几里得算法求最大公约数

def get_gcd(a, b):

k = a // b

remainder = a % b

while remainder != 0:

a = b

b = remainder

k = a // b

remainder = a % b

return b

#改进欧几里得算法求线性方程的x与y

def get_(a, b):

if b == 0:

return 1, 0

else:

k = a // b

remainder = a % b

x1, y1 = get_(b, remainder)

x, y = y1, x1 - k * y1

return x, y

#返回乘法逆元

def yunsle(a,b):

#将初始b的绝对值进行保存

if b < 0:

m = abs(b)

else:

m = b

flag = get_gcd(a, b)

#判断最大公约数是否为1,若不是则没有逆元

if flag == 1:

x, y = get_(a, b)

x0 = x % m #对于Python '%'就是求模运算,因此不需要'+m'

#print(x0) #x0就是所求的逆元

return x0

else:

print("Do not have!")

mod=15424654874903

#mod=23

a=16546484

#a=1

b=4548674875

#b=1

G=[6478678675,5636379357093]

#G=[3,10]

#次数

k=546768

temp=[6478678675,5636379357093]

#temp=[3,10]

for i in range(0,k):

if i == 0:

aaa=(3*pow(G[0],2) + a)

bbb=(2*G[1])

if aaa % bbb !=0:

val=yunsle(bbb,mod)

y=(aaa*val) % mod

else:

y=(aaa/bbb) % mod

else:

aaa=(temp[1]-G[1])

bbb=(temp[0]-G[0])

if aaa % bbb !=0:

val=yunsle(bbb,mod)

y=(aaa*val) % mod

else:

y=(aaa/bbb) % mod

#print y

Rx=(pow(y,2)-G[0] - temp[0]) % mod

Ry=(y*(G[0]-Rx) - G[1]) % mod

temp=[Rx,Ry]

#print temp

print temp

参考文献:

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
椭圆曲线加法乘法是密码学常用的加密算法Python也提供了相应的库来实现这些操作。下面简单介绍一下如何使用Python实现椭圆曲线加法乘法。 1. 加法运算 椭圆曲线加法的基本原理是将两个点相加得到第三个点。具体实现过程如下: 首先定义一个椭圆曲线的类,包括曲线参数a、b和模数p,以及点的坐标x和y。 ```python class EllipticCurve: def __init__(self, a, b, p): self.a = a self.b = b self.p = p class Point: def __init__(self, x, y): self.x = x self.y = y ``` 接下来,实现椭圆曲线上的点加法运算。如果两个点相同,则需要进行点的倍乘运算。如果两个点不同,则需要计算斜率k,然后根据斜率和点的坐标计算第三个点的坐标。 ```python def add(self, P, Q): if P == None: return Q if Q == None: return P if P.x == Q.x and P.y != Q.y: return None if P.x == Q.x: k = (3 * P.x * P.x + self.a) * pow(2 * P.y, -1, self.p) % self.p else: k = (Q.y - P.y) * pow(Q.x - P.x, -1, self.p) % self.p x3 = (k * k - P.x - Q.x) % self.p y3 = (k * (P.x - x3) - P.y) % self.p return self.Point(x3, y3) ``` 2. 乘法运算 椭圆曲线乘法的基本原理是将一个点倍乘得到另一个点。具体实现过程如下: 首先定义一个椭圆曲线的类,包括曲线参数a、b和模数p,以及点的坐标x和y。 ```python class EllipticCurve: def __init__(self, a, b, p): self.a = a self.b = b self.p = p class Point: def __init__(self, x, y): self.x = x self.y = y ``` 接下来,实现椭圆曲线上的点倍乘运算。通过不断相加同一个点来实现倍乘运算。 ```python def mul(self, n, P): R = None while n > 0: if n % 2 == 1: R = self.add(R, P) P = self.add(P, P) n = n // 2 return R ``` 以上就是Python实现椭圆曲线加法乘法的基本方法。需要注意的是,在实际应用,需要选择合适的曲线参数和模数,以确保算法的安全性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值