区块链学习01椭圆曲线加密算法

本文介绍了椭圆曲线加密算法的基础知识,包括椭圆曲线的定义、运算规则、正负取反、有限域上的椭圆曲线以及椭圆曲线加密和签名算法的原理。重点阐述了基于椭圆曲线的加密机制,其中离散对数问题是加密的核心。同时,还讲解了ECDSA签名算法的步骤,包括私钥签名和公钥验证签名的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

椭圆曲线加密算法

椭圆曲线:E:y2=ax3+ bx2+cx+d
假设a=1,b=0,c=-2,d=4时,所得到的椭圆曲线为:E:y2=x3-2x+4

如下图所示

在这里插入图片描述
椭圆曲线的运算规则
过曲线上的两点A、B画一条直线,找到直线与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A+B,即为加法。如下图所示:A + B = C

在这里插入图片描述
二倍运算
上述方法无法解释A + A,即两点重合的情况。因此在这种情况下,将椭圆曲线在A点的切线,与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A + A,即2A,即为二倍运算。
在这里插入图片描述
正负取反
将A关于x轴对称位置的点定义为-A,即椭圆曲线的正负取反运算。如下图所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值