python携程asyncio_【Python 学习笔记】异步IO (asyncio) 协程

# 0x00 前言

之前对协程早有耳闻,但一直没有去学习,今天就来学习一下协程,再次感谢莫烦的教程。

可以交给asyncio执行的任务被称为协程, asyncio 即异步的意思,在 Python3 中这是一个仅使用单线程就能达到多线程、多进程效果的工具。

在单线程中使用异步发起 IO 操作的时候,不需要等待 IO 的结束,在等待 IO 操作结束的这个空当儿可以继续做其他事情,结束的时候就会得到通知,所以能够很有效的利用等待下载的这段时间。

今天就来看看协程能不能干掉多线程和多进程。

# 0x01 基本用法

Python 的在 3.4 中引入了协程的概念,3.5 则确定了协程的语法,所以想使用协程处理 IO ,需要Python3.5 及以上的版本,下面是一个简单示例代码。

```Python

import time

import asyncio

async def job(t):

print('开始第', t,'个任务')

await asyncio.sleep(t)  #等待t秒

print('第', t, '个任务执行了', t, '秒')

async def main(loop):

tasks = [loop.create_task(job(t)) for t in range(1, 4)]     #创建多个任务

await asyncio.wait(tasks)    #运行刚才创建的那些任务

if __name__ == '__main__':

start_time = time.time()

loop = asyncio.get_event_loop()    #创建事件循环

loop.run_until_complete(main(loop))    #运行刚才创建的事件循环

loop.close()

print("所有总共耗时", time.time() - start_time)

```

运行结果如下:

```

开始第 1 个任务

开始第 2 个任务

开始第 3 个任务

第 1 个任务执行了 1 秒

第 2 个任务执行了 2 秒

第 3 个任务执行了 3 秒

所有总共耗时 3.0029773712158203

```

这里运行了三个任务,三个任务的执行时间加在一起是6秒,但是最后总共耗时是3秒,接下来就看看协程在爬虫中的使用。

# 0x02 aiohttp的使用

使用 aiohttp 模块可以将 requests 替换成一个异步的 requests ,下面先来看看一般的 requests 的使用,下面的运行结果耗时是我运行了三次,然后取平均数的结果。

```Python

import time

import requests

def normal():

for i in range(3):

r = requests.get(URL)

if __name__ == '__main__':

t1 = time.time()

URL = 'https://www.teamssix.com/'

normal()

print("正常访问 3 次博客耗费时间", time.time()-t1)

```

运行结果如下:

正常访问 3 次博客耗费时间 12.872265259424845

正常情况下,花费了近 13 秒,接下来使用 aiohttp 看看耗时多少。

```Python

import time

import asyncio

import aiohttp

async def job(session):

response = await session.get('https://www.teamssix.com/')       # 等待并切换

return str(response.url)

async def main(loop):

async with aiohttp.ClientSession() as session:      # 官网推荐建立 Session 的形式

tasks = [loop.create_task(job(session)) for _ in range(3)]

finished, unfinished = await asyncio.wait(tasks)

if __name__ == '__main__':

t1 = time.time()

loop = asyncio.get_event_loop()

loop.run_until_complete(main(loop))

loop.close()

print("异步访问 3 次博客耗费时间", time.time() - t1)

```

运行结果如下:

```

异步访问 3 次博客耗费时间 4.055158615112305

```

从运行结果上来看使用 aiohttp 还是很给力的,接下来,看看多线程运行的时间。

```Python

import time

import threading

import requests

def thread_test():

r = requests.get(URL)

if __name__ == '__main__':

t1 = time.time()

URL = 'https://www.teamssix.com/'

thread_list = []

for i in range(3):

t = threading.Thread(target=thread_test)

thread_list.append(t)

for i in thread_list:

i.start()

for i in thread_list:

i.join()

print("多线程访问 3 次博客耗费时间", time.time()-t1)

```

运行结果如下:

```

5.449431339899699

```

可以看到 aiohttp 的速度还是要略快于多线程的,这里只是简单介绍了一下 aiohttp ,详细的可以参阅[官方文档](https://docs.python.org/zh-cn/3/library/asyncio.html),想要使用的熟练还是需要大量练习,任重道远。

> 更多信息欢迎关注我的个人微信公众号:TeamsSix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值