java求根号函数_一般实系数四次方程的一种求根公式与根的判别法则及其推导...

6a1ba6d49a57398d67fa4acabc71eb4e.gif

仿照《方程式论》(

伯恩赛德班登 著),我们设四次方程的一般形式为:

方程两边同除以

,然后作代换:

我们有:

令:

那么有:

我们假设

,然后求解方程

设:

代入方程

并整理,我们有:

式中,令:

即是:

与:

此时,有:

再由

式得:

联立

可知,
是如下三次方程的解:

亦即是:

利用卡尔丹公式,我们有:

即是卡尔丹公式里的参数。令:

那么

变为:

计算方程

的卡尔丹判别式,它是:

令:

变为:

接下来分四种情况讨论。

亦即

,利用卡尔丹公式解之,并考虑到
的顺序,我们有:

为方便计算,令:

这时

变为:

所以:

接下来,假设

。这时有
,所以我们可以设:

一个复数的平方根有两个值,这里选择

都为正的一个,这时的
是:

变为:

另外,由

式可知

下面选取合适的

的值。根据
式得:

时,因为
,所以
式小于零,这时在
中只有如下两种可能:

详细列表,有如下四种取值情况:

再由

式,我们得到了方程
的根:

时,因为
,所以
式大于零,仿上推导,我们有结论:

为了将两种情况的公式统一,我们引入

函数。根据此函数定义,有:

所以

可统一表示为:

公式

是在
的前提下推导出来的,当
时,得出的结论在形式上与公式
相同,只是在
时,有
,这时应该设:

之值不变,而相应的
值略微改变,剩余步骤相同,在此省略。

现在计算

的值。根据
式可得:

由此解得:

又因为:

将之代入

的表达式可得:

最后,将

代入公式
,再由
式,我们有:

至此,

,也就是
时的公式推导完毕。

亦即

,因为
的符号原因,下分
两种情况讨论。

首先假设

,同样利用卡尔丹公式解之,有:

其中:

令:

则有:

所以:

接下来的一个必要的问题是讨论

的符号问题。

根据

式,有
成立,如果三个实数乘积为正,要么这三个数全为正数,要么一者为正,两者为负,据此可以列表如下:

又因为当

时,有
,所以根据余弦函数的单调性,必有
成立,所以上述列表中的后两种情况可以排除,即是只有如下两种情况:

所以接下来还需要再分这两种情况讨论。

① 当

时。

时,因为
,所以
式小于零,而三个实数乘积为负,要么三者同为负,要么一者为负,两者为正,据此在
中选取合适的
列表并排序整理,结果如下:

再由

式,我们便得到了方程
的解:

同理,当

时,结果为:

将两种情况合并到一起,我们有:

至此,情况①讨论完毕。

② 当

时。

同样根据

式,当
时,
式小于零,此时
有如下两种取值可能:

详细列表得:

所以这时,方程

的解为:

同理可得

时方程
的解,它是:

将两种情况合并,有:

至此,情况②讨论完毕。

为了将公式

和公式
合并,我们引入一个参数
,并令:
,这样就可以将它们合并为:

再由

式,我们便得到了方程
的解,也就是求根公式:

再看当

时的情况。这时我们令:

其中:

仿照

时的推导,最后的结论与
时的公式在形式上一致。这时的
还有
亦可统一如下:

至此,

,也就是
的公式推导完毕。

亦即

,此时方程的根可由
时的公式解得,原因是:当卡尔丹判别式等于零时的三次方程的解可由卡尔丹判别式小于零的公式求解———此结论在之前推导卡尔丹公式的时候已经证明过了,所以推导
时的求根公式相当于把推导
时的公式的步骤重复一遍———这当然是没必要的。

基于同样的理由,这种情况下的方程的根也可由

时的公式求解。但为了方便讨论根的判别法则,我们还是以
时的公式计算为好。

亦即

,此时方程
有一个三重实根,仿照之前求根公式的推导,我们有如下结论:当
时,方程
有一个三重实根:
和一个单重实根:

(其实,我们只要稍微费一点功夫就能证明这种情况下的方程的解也能由

时的公式求解,不过这么简单的问题肯定不会难倒看这篇文章的各位,所以我就把这个证明省略了)

至此,

之情况讨论完毕。

最后,当

时,方程
变为:

这是一个双二次方程,利用二次方程求根公式和

式,我们有:

至此,公式推导完毕。

下面我们证明实系数四次方程根的判别法则。在此之前,先做一点准备工作。

为了方便讨论,我们令

,这时方程
变为:

并且我们有以下结论:

  • 定理
    :如果方程
    有两个互异正根,那么方程
    有四个互异实根。
  • 定理
    :如果方程
    有两个互异负根,那么方程
    有两对互异的共轭虚根。
  • 定理
    :如果方程
    的根为一正一负,那么方程
    有两个互异实根和一对共轭虚根。
  • 定理
    :如果方程
    有一对共轭虚根,那么方程
    有两对互异的共轭虚根。
  • 定理
    :如果方程
    有一个两重正根,那么方程
    有两个互异的两重实根。
  • 定理
    :如果方程
    有一个两重负根,那么方程
    有一对两重共轭虚根。
  • 定理
    :如果方程
    有一个正根和一个零根,那么方程
    有一个两重实根和两个单重实根。
  • 定理
    :如果方程
    有一个负根和一个零根,那么方程
    有一个两重实根和一对共轭虚根。
  • 定理
    :如果方程
    有一个两重零根,那么方程
    有一个四重实根。

上述九个定理是当

时得到的,当
时,我们有下述六个定理:
  • 定理
    :如果方程
    有一个正根和一对共轭虚根,那么方程
    有两个互异实根和一对共轭虚根。
  • 定理
    :如果方程
    有三个互异正根,那么方程
    有四个互异实根。
  • 定理
    :如果方程
    有一个正根和两个互异负根,那么方程
    有两对互异的共轭虚根。
  • 定理
    :如果方程
    有一个三重正根,那么方程
    有一个三重实根。
  • 定理
    :如果方程
    有一个单重正根和一个两重正根,那么方程
    有一个两重实根和两个单重实根。
  • 定理
    :如果方程
    有一个单重正根和一个两重负根,那么方程
    有一个两重实根和一对共轭虚根。

这就是我们做的准备工作,这些定理显而易见的正确,并且利用反证法可以知道,它们的逆命题也是对的,但我打算省略证明,毕竟我不觉得这些证明会对看这篇文章的各位造成什么困扰。现在,我们可以开始证明根的判别法则了。

  • ㈠ 方程有两个互异实根和一对共轭虚根的充要条件是

证明:如上所述,这种根的情形在

时都存在,所以我们需要分这两种情况证明。
时。由
时的公式的推导可知充分性成立。然后由定理
的逆定理可知必要性成立。
时。先证充分性:由
可得:

展开并整理:

将其当成一个关于

的三次不等式,然后借助卡尔丹公式,我们发现它可以因式分解:

所以有

成立,所以在方程
中,有
成立。根据二次方程根与系数的关系可知,方程
的两个根一正一负,由定理
可知,方程
有两个互异实根和一对共轭虚根。充分性成立。

再证必要性:由定理
的逆定理可知,当
时,如果方程
有两个互异实根和一对共轭虚根,那么方程
的两个根必为一正一负,此时有
成立,亦即
成立,由此可得:

而:

所以此时有

。必要性成立。证毕。
  • ㈡ 方程有四个互异实根的充要条件是

证明:我们同样分

这两种情况证明。

时。先证充分性:当
时,由
可得
,再由
可得:

根据余弦函数的单调性,我们有:

所以:

所以此时有

,又由公式的推导知
同号,所以
,所以方程
有四个互异实根,充分性成立。

再证必要性:由定理

的逆定理可知,当方程
有四个互异实根时,方程
必有三个互异正根,应用公式里的参数,即是
所以此时有
,再由公式的推导可知
恒为正,所以由
同号且同为正可得
,继而有
。必要性成立。

时。先证充分性:由
可得:
,所以
,再加上条件
可知方程
有两个互异正根,因此由定理
可知方程
有四个互异实根,充分性成立。

再证必要性:由定理

的逆定理可知,当
时,如果方程
有四个互异实根,那么方程
有两个互异正根,所以有
成立,而由
可得:

再由:

可知

,必要性成立。证毕。
  • ㈢ 方程有两对互异的共轭虚根的充要条件是
    不全为正。

证明:我们同样分

来讨论,并且在
时也需要分两种情况,所以总共需要分三种情况讨论。

时。先证充分性:当
时,如果
,那么
,所以
,所以此时方程
有两对互异共轭虚根;如果
,那么有
,此时也有
成立,因此方程
有两对互异的共轭虚根。充分性成立。

再证必要性:由定理

的逆定理可知,当方程
有两对互异的共轭虚根时,方程
必有一个正根和两个互异负根,应用公式里的参数,即是
,所以此时有
,因为
恒为正,所以由
同号且同为负可得
,由此即得
。必要性成立。

时。先证充分性:由
可得
。这时如果加上条件
,那么方程
有两个互异负根,由定理
可知,方程
有两对互异的共轭虚根;如果加上条件
,那么方程
有一对共轭虚根,再由定理
可知,方程
也有两对互异的共轭虚根。充分性成立。

再证必要性:定理

和定理
的逆定理告诉我们,在
时,如果方程
有两对互异的共轭虚根,那么方程
要么有两个互异负根,要么有一对共轭虚根。如果方程
有两个互异负根,那么有
成立,而由
可得
;如果方程
有一对共轭虚根,那么有
成立,同样由
可得
,所以必要性成立。证毕。
  • ㈣ 方程有一个两重实根和两个单重实根的充要条件是

证明:我们继续分

讨论。

时。先证充分性:当
时,由
可得
,而由
时的公式可知,当
时,方程
有重根。

时,
,由三次方程的韦达定理可知
恒为正,所以这时,方程
有两个互异实根和两个单重实根。

时,我们有结论:当
时,方程有一个两重实根和两个单重实根,因为这时有
,因此在这种情况下,方程
恒有一个两重实根和两个单重实根。但为了和
时的法则统一,我们将其写为
时的样子,毕竟
也能得出
,所以充分性成立。

再证必要性:由定理

的逆定理知,如果方程
有两个互异实根和两个单重实根,那么方程
必有一个单重正根和一个两重正根。当
时,应用公式里的参数,即是
,而这时当然有
成立,因为
恒为正,所以由
可得
,由此可得
;当
时,再次应用公式里的参数,我们有
,这时也有
成立,并且由
可得
,必要性成立。

时。先证充分性:由
可得:
,现在加上条件
,那么我们有
,再加上条件
可知,此时方程
有一个零根和一个正根,由定理
可知,方程
有一个两重实根和两个单重实根,充分性成立。

再证必要性:当

时,由定理
的逆定理可知,若方程
有一个两重实根和两个单重实根,那么方程
必有一个零根和一个正根,由此可得
,即
。又由
可得
,所以:

所以必要性成立,证毕。

  • ㈤ 方程有一个两重实根和一对共轭虚根的充要条件是
    不全为正。

证明:我们同样分

这两种情况证明。

。根据之前的讨论,这种根的情形只会在
并且
时存在,此时当然有
,又因为
恒为正,所以当
时,有
成立,因此由定理
可知,方程
有一个两重实根和一对共轭虚根,充分性成立。

再证必要性:由定理

的逆定理可知,当
时,若方程
有一个两重实根和一对共轭虚根,则方程
必有一个单重正根和一个两重负根,此时有
,并且
,由此即得
。必要性成立。

时。先证充分性:就像 ㈣ 那样,由
可得
。现在加上条件
,我们有
,再加上条件
可知,方程
有一个零根和一个负根,再由定理
可知方程
有一个两重实根和一对共轭虚根。充分性成立。

再证必要性:根据定理

的逆定理,当
时,若方程
有一个两重实根和一对共轭虚根,则方程
必有一个负根和一个零根,这时有
成立,亦即
成立。必要性成立,证毕。
  • ㈥ 方程有一个三重实根和一个单重实根的充要条件是

证明:由公式的推导可知充分性成立,再由定理

的逆定理可知必要性成立。证毕。
  • ㈦ 方程有两个互异的两重实根的充要条件是

证明:根据我们做的准备工作可以知道,这种根的情形只会在

时存在,这时,由
可知方程
有一个两重正根,再由定理
可得,方程
有两个互异的两重实根,充分性成立。再根据定理
的逆定理,当
时,如果方程
有两个互异的两重实根,那么方程
必有一个两重正根,所以有
。必要性成立,证毕。
  • ㈧ 方程有一对两重共轭虚根的充要条件是

证明:和 ㈦ 的证明完全类似,这里省略。

  • ㈨ 方程一个四重实根的充要条件是

证明:这种根的情形同样只在

存在,并且充分性显然成立,而由
和定理
的逆定理可知必要性成立,证毕。

现在,让我们把分散在这篇文章各处的结论汇总一下。先来求根公式。

设实系数四次方程的一般形式为:

令:

那么有如下求根公式:

㈠ 当

时。

,则方程的根为:

其中:

,下同。

,则方程的根为:

其中:

,则方程有一个三重实根:
和一个单重实根:

㈡ 当

时。这时方程的根为:

公式总结完毕,再来判别法则:

对于实系数四次方程:

令:

那么有如下根的判别法则:

㈠ 当

时,方程有两个互异实根和一对共轭虚根。

㈡ 当

时,方程有四个互异实根。

㈢ 当

时,方程有两对互异的共轭虚根。

㈣ 当

时,方程有一个两重实根和两个单重实根。

㈤ 当

时,方程有一个两重实根和一对共轭虚根。

㈥ 当

时,方程有一个三重实根和一个单重实根。

㈦ 当

时,方程有两个互异的两重实根。

㈧ 当

时,方程有一对两重共轭虚根。

㈨ 当

时,方程有一个四重实根。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值