python调用wind数据_python实现从wind导入数据

本文介绍了如何使用Python的WindPy库从Wind金融终端下载一系列股票的收盘价格数据,并将其转换为DataFrame。通过`w.wsd()`函数,配合pandas进行数据处理,将日期设为索引,股票代码为列名,创建时间序列数据表格。
摘要由CSDN通过智能技术生成

从wind导入到的数据的格式是instance。

如下载一系列资产在某一段时间的收盘价格。

一系列资产保存在list里面,一并下载。

日期格式为“2018-02-28”。

一个数字串儿表示的日期,记得也可以使用。

导入数据结果中,如果数据是缺失的,python中显示为nan。

如果没有其他参数,用“”表示,跟matlab导入wind不一样。

from WindPy import *

w.start()

import pandas as pd

assetList = ["000300.SH", "000905.SH"]

startDate = "2012-01-02"

endDate = "2013-01-02"

dataImport = w.wsd(assetList, "close", startDate, endDate, "")

#type(dataImport) 类型是instance

#wsd是日期序列的wind导入函数,"close"是wind导入的指标名称

#如果下载其他指标,“”内可以设置相应的参数,比如单位、币种等。

#通过在wind右下角输入cg,获得wind数据下载代码生成器页面

dates = pd.to_datetime(dataImport.Times)

#time series data, 日期作为后面df的index

#作为index时,日期格式统一一下

#错误:df = pd.DataFrame(dataImport.Data, index = dates.strftime("%Y-%m-%d"), columns = assetList)

#生成一个收盘价格的时间序列表格,行名称是日期,列名称是股票代码

#dataImport.data的表达方式:列是日期,资产是行,所以需要转置。要么在转置之后加上index和column。

#要么在加上index和column之后再转置,但加的时候跟上面的不一样。

#方法一:

df = pd.DataFrame(dataImport.Data).T

df.index = dates.strftime("%Y-%m-%d")

df.columns = assetList

#方法二:

df = pd.DataFrame(dataImport.Data, index = assetList, columns = dates.strftime("%Y-%m-%d")).T

以上这篇python实现从wind导入数据就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值