python神经网络算法实例-Python实现的人工神经网络算法示例【基于反向传播算法】...

本文实例讲述了Python实现的人工神经网络算法。分享给大家供大家参考,具体如下:

注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行。

本程序实现了《机器学习》书中所述的反向传播算法训练人工神经网络,理论部分请参考我的读书笔记。

在本程序中,目标函数是由一个输入x和两个输出y组成,

x是在范围【-3.14, 3.14】之间随机生成的实数,而两个y值分别对应 y1 = sin(x),y2 = 1。

随机生成一万份训练样例,经过网络的学习训练后,再用随机生成的五份测试数据验证训练结果。

调节算法的学习速率,以及隐藏层个数、隐藏层大小,训练新的网络,可以观察到参数对于学习结果的影响。

算法代码如下:

#!usr/bin/env python3

# -*- coding:utf-8 -*-

import numpy as np

import math

# definition of sigmoid funtion

# numpy.exp work for arrays.

def sigmoid(x):

return 1 / (1 + np.exp(-x))

# definition of sigmoid derivative funtion

# input must be sigmoid function"s result

def sigmoid_output_to_derivative(result):

return result*(1-result)

# init training set

def getTrainingSet(nameOfSet):

setDict = {

"sin": getSinSet(),

}

return setDict[nameOfSet]

def getSinSet():

x = 6.2 * np.random.rand(1) - 3.14

x = x.reshape(1,1)

# y = np.array([5 *x]).reshape(1,1)

# y = np.array([math.sin(x)]).reshape(1,1)

y = np.array([math.sin(x),1]).reshape(1,2)

return x, y

def getW(synapse, delta):

resultList = []

# 遍历隐藏层每个隐藏单元对每个输出的权值,比如8个隐藏单元,每个隐藏单元对两个输出各有2个权值

for i in range(synapse.shape[0]):

resultList.append(

(synapse[i,:] * delta).sum()

)

resultArr = np.array(resultList).reshape(1, synapse.shape[0])

return resultArr

def getT(delta, layer):

result = np.dot(layer.T, delta)

return result

def backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num):

# 可行条件

if hidden_num < 1:

print("隐藏层数不得小于1")

return

# 初始化网络权重矩阵,这个是核心

synapseList = []

# 输入层与隐含层1

synapseList.append(2*np.random.random((input_dim,hidden_dim)) - 1)

# 隐含层1与隐含层2, 2->3,,,,,,n-1->n

for i in range(hidden_num-1):

synapseList.append(2*np.random.random((hidden_dim,hidden_dim)) - 1)

# 隐含层n与输出层

synapseList.append(2*np.random.random((hidden_dim,output_dim)) - 1)

iCount = 0

lastErrorMax = 99999

# while True:

for i in range(10000):

errorMax = 0

for x, y in trainingExamples:

iCount += 1

layerList = []

# 正向传播

layerList.append(

sigmoid(np.dot(x,synapseList[0]))

)

for j in range(hidden_num):

layerList.append(

sigmoid(np.dot(layerList[-1],synapseList[j+1]))

)

# 对于网络中的每个输出单元k,计算它的误差项

deltaList = []

layerOutputError = y - layerList[-1]

# 收敛条件

errorMax = layerOutputError.sum() if layerOutputError.sum() > errorMax else errorMax

deltaK = sigmoid_output_to_derivative(layerList[-1]) * layerOutputError

deltaList.append(deltaK)

iLength = len(synapseList)

for j in range(hidden_num):

w = getW(synapseList[iLength - 1 - j], deltaList[j])

delta = sigmoid_output_to_derivative(layerList[iLength - 2 - j]) * w

deltaList.append(delta)

# 更新每个网络权值w(ji)

for j in range(len(synapseList)-1, 0, -1):

t = getT(deltaList[iLength - 1 -j], layerList[j-1])

synapseList[j] = synapseList[j] + etah * t

t = getT(deltaList[-1], x)

synapseList[0] = synapseList[0] + etah * t

print("最大输出误差:")

print(errorMax)

if abs(lastErrorMax - errorMax) < 0.0001:

print("收敛了")

print("####################")

break

lastErrorMax = errorMax

# 测试训练好的网络

for i in range(5):

xTest, yReal = getSinSet()

layerTmp = sigmoid(np.dot(xTest,synapseList[0]))

for j in range(1, len(synapseList), 1):

layerTmp = sigmoid(np.dot(layerTmp,synapseList[j]))

yTest = layerTmp

print("x:")

print(xTest)

print("实际的y:")

print(yReal)

print("神经元网络输出的y:")

print(yTest)

print("最终输出误差:")

print(np.abs(yReal - yTest))

print("#####################")

print("迭代次数:")

print(iCount)

if __name__ == "__main__":

import datetime

tStart = datetime.datetime.now()

# 使用什么样的训练样例

nameOfSet = "sin"

x, y = getTrainingSet(nameOfSet)

# setting of parameters

# 这里设置了学习速率。

etah = 0.01

# 隐藏层数

hidden_num = 2

# 网络输入层的大小

input_dim = x.shape[1]

# 隐含层的大小

hidden_dim = 100

# 输出层的大小

output_dim = y.shape[1]

# 构建训练样例

trainingExamples = []

for i in range(10000):

x, y = getTrainingSet(nameOfSet)

trainingExamples.append((x, y))

# 开始用反向传播算法训练网络

backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num)

tEnd = datetime.datetime.now()

print("time cost:")

print(tEnd - tStart)

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值