tf.shape(a)和a.get_shape()比较

相同点:都能得到tensor a 的尺寸 不同点:tf.shape()中a数据类型可以是tensor,list,array。 a.get_shape()中a的数据类型只能是tensor,且返回的是一个元组。 作者:林林同學 来源:CSDN 原文:https://blog.csdn.net/m0_3...

2019-03-11 23:18:43

阅读数 54

评论数 0

华擎主板 Bios进入 (F8)

F8

2019-02-21 16:14:34

阅读数 937

评论数 0

resnet50结构图

![这里写代码片](https://img-blog.csdn.net/20180814210843952?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzIxMDQ2MTM1/font/5a6L5L2T/fontsize/400/fill/I...

2018-08-14 21:09:07

阅读数 25728

评论数 7

DeepLab 笔记

三个贡献: 1. 使用上采样滤波器和Atrous卷积,Atrous卷积可以控制深度卷积神经网络中特征分辨率,能够有效扩大过滤器的视野范围,以便在不增加参数数量或计算量的情况下结合更大的上下文。 2. 提出了(ASPP)以在多个尺度上健壮地分割对象。用多采样率和有效感受野处理卷机特征层,以多尺度...

2018-06-28 12:56:58

阅读数 276

评论数 0

iloc和loc的区别

https://www.douban.com/note/637242742/

2018-05-02 21:55:12

阅读数 347

评论数 0

install gpu record

ubantu16.04 cuda8.0 cuda6.0 Anaconda3.0 (python3.6) tensorflow-gpu==1.4.1 keras-gpu(with conda # conda install keras-gpu)

2018-03-10 16:03:26

阅读数 151

评论数 0

Mask R-CNN 翻译

摘要 我们提出了一个概念上简单,灵活和通用的对象实例分割框架。我们的方法可以高效地检测图像中的物体,同时为每个物体生成高质量的分割蒙版。这种称为Mask R-CNN的方法通过添加一个用于预测对象掩码的分支来扩展更快的R-CNN,该分支与现有分支进行边界框识别并行。掩码R-CNN训练简单,只增加了...

2018-02-27 09:56:50

阅读数 762

评论数 0

Fully Convolutional Networks for Semantic Segmentation 翻译

摘要卷积网络是功能强大的可视化模型,可以产生功能的层次结构。我们展示了卷积网络自身,像素到像素的端对端训练超过了语义分割的最新水平。我们的关键洞察力是建立“完全卷积”网络,可以输入任意大小的数据,并通过有效的推理和学习生成相应大小的输出。我们定义和详细说明完全卷积网络的空间,解释它们在空间密集预测...

2018-02-25 20:25:24

阅读数 1826

评论数 1

python 获得目录中所有的文件列表

PATH = ‘文件夹路径’ 1、list_dir = os.listdir(PATH) 2、list_dir = next(os.walk(PATH))[1]

2018-02-06 18:34:37

阅读数 7743

评论数 0

dataframe 获取列名列表

DataFrame.columns.values.tolist()

2018-01-30 21:20:51

阅读数 48527

评论数 5

Visual Attention Based on Long-Short Term Memory Model for Image Caption Generation 论文笔记

图像描述现在存在问题:生成的描述很呆板、对图像里的物体描述的不够具体, 用cnn提取图像特征,结合CNN和RNN产生一个端到端的图像生成系统,用词向量把单词长度不同的句子变成固定维度的向量。提出一个注意力机制通过可视化展示模型是如何让系统注意到图像中的明显的物体的。在三个数据及上做了测试,得到最...

2018-01-25 10:37:15

阅读数 369

评论数 0

连接图像和自然语言(翻译)二

深度学习的背景本章提供机器学习和神经网络的必要技术背景。我们推荐Goodfellow等人的“深度学习”一书。 [3]。2.1监督学习 许多实际问题可以表述为需要计算机执行映射f:X→Y,其中X是输入空间,Y是输出空间。例如,在视觉识别中,X可以是图像的空间,Y可以是表示猫出现在图像某处的概率的区...

2018-01-03 15:24:49

阅读数 353

评论数 0

连接图像和自然语言(翻译)一

摘要人工智能领域的一个长期目标是开发可以感知和理解我们周围丰富的视觉世界的代理,并且可以用自然语言与我们沟通。由于计算基础设施,数据收集和算法的同步发展,在过去几年里,这个目标已经取得重大进展。视觉识别方面的进步尤为迅速,现在的计算机可以将图像分类为与人类相媲美的类别,甚至在某些情况下,例如对犬类...

2018-01-03 14:09:32

阅读数 1130

评论数 1

从图像生成自动描述:对模型,数据集和评估方法的综述

摘要从自然图像生成自动描述是一个具有挑战性的问题,近来受到计算机视觉和自然语言处理社区的大量关注。 在本次调查中,我们根据他们如何将这个问题概念化的现有方法进行分类,即将描述作为生成问题或作为视觉或多模态表征空间上的检索问题的模型。 我们提供了对现有模型的详细回顾,突出其优点和缺点。 此外,我们概...

2018-01-03 09:18:57

阅读数 31980

评论数 6

Show and Tell: A Neural Image Caption Generator 翻译

摘要自动描述图像的内容是连接计算机视觉和自然语言处理的人工智能中的一个基本问题。在本文中,我们提出了一个基于深度重构架构的生成模型,它结合了计算机视觉和机器翻译方面的最新进展,可以用来生成描述图像的自然语句。训练该模型以最大化训练图像给出的目标描述句子的可能性。在几个数据集上的实验显示模型的准确性...

2017-12-30 19:41:15

阅读数 3259

评论数 0

RNN 在图像描述生成中扮演的角色?(翻译)

摘要在图像描述生成系统中,递归神经网络(RNN)通常被视为主要的“生成”组件。这个观点表明图像特征应该被注入到RNN中。这实际上是文学中的主导观点。或者,RNN可以被视为仅对先前生成的词进行编码。这个观点表明,RNN只能用来编码语言特征,只有最后的表示与后期的图像特征“合并”。 本文比较了这两种...

2017-12-25 15:09:21

阅读数 1754

评论数 0

图像特征应该在哪个阶段输入到图像描述生成器当中(翻译)

摘要图像标题生成是生成图像内容的自然语言描述的任务。一种方法是使用神经语言模型,一种逐个生成句子的神经网络。这些工作通过使用循环的神经网络(RNN),基于其前缀或“历史”来预测句子中的下一个单词。然后可以将该预测的单词附加到先前的前缀以便预测之后的单词,等等,直到生成整个句子。通过对图像特征进行预...

2017-12-25 09:54:19

阅读数 2883

评论数 0

BLEU: a Method for Automatic Evaluation of Machine Translation

通常,一个给定的源句子有很多“完美”的翻译。即使他们使用相同的单词,这些翻译可能在词语选择或词序中有所不同。然而,人类可以清楚地区分出好的翻译和坏的翻译。例如,考虑这两个中文源句子的候选翻译:候选人1:确保军队始终服从党的指挥的行动指南。候选人2:保证部队永远听取党指导的活动指南。虽然它们似乎是在...

2017-12-24 16:42:41

阅读数 429

评论数 0

Mac 环境下 CMake 安装

1、首先去cmake,官网,下载Mac操作系统对应的安装包https://cmake.org/download/2、在控制台输入 sudo “/Applications/CMake.app/Contents/bin/cmake-gui” –install3、输入 cmake –version 检查

2017-12-10 20:21:08

阅读数 10129

评论数 1

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architect...

2017-11-25 15:59:24

阅读数 939

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭