近世代数思想方法在数论中的应用
(6页)
本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!
9.9 积分
近世代数思想方法在数论中的应用2007年5月第26卷第5期绵阳师范学院JournalofMianyangNormalUniversityMay.,2007V01.26NO.5近世代数思想方法在数论中的应用张清,唐再良(绵阳师范学院数学与信息科学系,四川绵阳621000)摘要:讨论了近世代数思想方法在证明初等数论定理和素数判断中的应用,介绍了 素数判断的多项式时间方法.关键词:群;环;模;数论;素数中图分类号:0156.2文献标识码:A文章编1672-612x(2007)05-0012-031引言数论一度被认为是漂亮的但却没什么大用处的纯数学学科?30多年来,电子计算 机的产生与发展,给科学技术带来无比巨大的变革,这使数论有了非常广泛的盲接应用途径?例如在近 20年来发展起来的高维数值积分的数论网格法的研究中,数论的成果被广泛应用?其中,有关数论算法 的广泛使用,部分是因为基于大素数的密码系统的发明?数论更是数学研究的重要内容之一?数论知识在 计算机科学,通讯及商业等领域都有着重要的应用.数论的问题以其抽象且难度大而着称,众所周知,抽象也是近世代数的最大特点.近世代数不仅在数学屮占有及其重要的地位,而且在其它学科中也有广泛的应用,如理论物理,计算 机学科等?其研究的方法和观点,对其他学科产牛了越来越大的影响.同时近世代数思想方法多年以来也一 直都被用到数论问题的处理中,特别是用到费尔马最后定理的处理.下面我们通过几个初等数论定理的 处理来介绍近世代数思想方法在初等数论中的运用.2群论思想在数论定理证明中的应用群论是代数学中最古老最丰富的分支之一,群论思想在近代物理,近代化学,数字 通信,系统工程等许多领域都有重要应用,同时群的思想方法也促进了数学科学本身的发展.下面我们 通过几个初等数论的定理处理来介绍群论思想方法在数论中的应用.定理1 (Fermat)设P是一个素数且口是一个不能被P整除的自然数,那么 lmodp.证明:考虑modP的非零剩余类组成的乘法群G二{1,2,???,P — 1}.对于口是一个不 能被P整除的自然数,口?二(口)一= 1.所以口一 E1 moap.推论:设P是素数且口是自然数,那么=amodp.证明:如果P整除口,那么;amodp.如果P不整除口,那么由定理1可得?;lmodp.以 上两种情况都可以得到一 amodp.定理2(Euler)设n>l是自然数且口是与n互素的整数,那么口;lmodn.证明:考虑modn的剩余类屮单位元作成的群G={Igcd(x,n)=l}.则G的阶为(n).对 于任意与n互素的整数口,1-1=()1.所以)=lmodn.收稿日期:2007-04-27作者简介:张清(1976 —),男,硕士,研究方向:代数与符号计算.第5期张清等:近世代数思想方法在数论中的应用?13?定理3(Wilson)设P是素数,那么(P — 1)!~ 1 [email protected]{1,2,…,P — 1}.因为s 1 modp当且 仅当(一l)(+l)sOmodp当且仅当s± 1 modp,所以对于任意的H± 1,H?.所以(p — l)!=(lxp一 1)Xn(X)=lXP— 1 二一 1.所以(p — 1)!;— 1 modp.Ec—1± il3环论思想在数论定理证明屮的应用环也是近世代数中一类重要的,基本的代数系统,环论思想与群一样有着广泛的应 用?下面我们通过初等数论的定理处理来说明环论思想方法在数论中的应用.定理4(Fermat)设是P奇素数.Kp;lmod4,那么P是两个平方的和,即存在整数,Y使 得P=+2Y0证明:由于是偶数,那么一 [email protected])@逆元配 对,1与P— 1;一 [email protected] X2X???X_X — IX— 1 X---X—_所以[()!];- lmodp如果一 l;2modp,那么P整除+1.现在我们在高斯整数环Z[i]中分解+1为(一 i)(+i). 既然P不能整除任一个因子,那么P在Z[i]中不是素数?因为高斯整数环是唯一分解环,P 是可约的?所以我们就写P二,其中和卢都不是单位.定义y=a+bi的范数为N(7)=a+6.那么N(7)=l当且仅当y是1,一 1,咸一 i当且仅 当y是单位?所以P=N(p)=N(Ot)N(fl),其中 N(Ot)>l 且 N(fl)>l, 所以 N(Ot)=N(fl)=P.女口果 6二+iy,男么 P二+.反乙如果P是奇素数且p=+Y,那么P同余于lmod4.[如果是偶数,那么=Omod4, 且如果是奇数,那么;lmod4.由于P是奇数,和Y不能同时为偶数或奇数?]定理5(Wolstenh.lme)如果是p —个大于3素数,那么1 + 1 +了 1+???+的分子能被p2 整除证明:设)=(一 1)(- 2)…(一(P — 1)).将)展开成的幕级数形式)=_?一 S1 一+s2 —+ Sp?2?+Sp — 1其中的一些系数能很简单的写出?比如,s=l+2+???+(p — l)=;sp —=(p — l)!;s 一=(1 ++—+…+)X(p — 1)!.这样我们就建立了与原问题的联系.而其他的系数我们就把他 [email protected],根据费尔马小定理,)在0巾可[]中的像就是(一1)( 一2)…(一(P 一 1))=?一 1.所以对任意的i<P 一 1,S是P的倍数.P)二(P — i)!=o).所以 O::pP?pp —.pP —.+S1,?3P —$p?2这是P 一 1个数的和,前P —2个数都是P的倍数?所以一是p的倍数.由于(p — l)!;lm?如,(p — 1)!与p互素?所以1+丢+ —+???+就是p.的倍数.914?绵阳师范学院(自然科学版)第26卷问题:口,b,c在什么情况下,{口 ++C1WZ}含有无限多个素数.4模方法在素数判断中的应用素数的定义其实就给出了判断素数的方法:尝试每个mW,如果有一个m整除//,, 则〃,是合数,否则凡是素数.筛法生成所有小于n的素数.但这些算法的效率不高?需要()步才能决 定?[3]用近世代数的模方法给出了多项式时间算法.引理1[3]:设口是整数,凡是大于2的自然数且(口,n)=l.那么凡是素数当且仅当(戈+ 口 )=戈 + 口 (modn)利用这个引理判断素数的吋候,最多需要计算等式左边n个系数.于是我们可以模 一 1(其中r比较小)来减少需要计算的系数的个数.凡是素数当且仅当(+口);+ 口(modx 一 l,n)对所有的 口和匸而当凡是合数时,只对少数的口和满足上述等式.定义1:设口是整数,r是自然数且(口,「)=1 ?定义口模r的阶为最小的正整数使得 口 ;l(modr).记为0,( 口).算法】:(AKS)输人整数N>l1 .如果(n= 口,其屮口是自然数,b>l),输出合数.2?找到最小的r使得0,(n)>log2(n).3?如果存在口 Wr使得1 <( 口 ,n)<n,输出合数.4.如果nWr,输岀素数.5?从口=1 到 Iog(n)l 做:如果(+口)H+ □ (modx 一 l,n),输出合数.6.输出素数.定理1[31:AKS算法返冋素数当口仅当凡是素数.定理2[3] :AKS算法的极限时间复杂度为0(1 ogn)=O(l og7 ?n?poly(l og(l ogn)))HendrikLenstra和CarlPomerance改进了算法,其时间复杂度为O(log.n).如果下面 的猜想成立,AKS吋间复杂度可以进一步改进为0(logn)?E4]已经验证了当1W100 口 nWlOm 时,猜想正确.猜想:设r是素数且不能整除n.如果(一 1) 1 (modx 一 l,n),那么凡是素数或n;l(modr).参考文献:[llRobertB.Ash.AeouI^einalgebraicnumbertheory.Onlinepreprintbook^OOS.[2] DaveRusin,Wolstenholme-congruence.0nlinelecturenotes.2006.[3] Agrawal,KayalandSaxena(AKS),PrimesisinP.AnnualofMathematics,2004( 160):781-793[4] KayalandSaxena(AKS),Towardsapolynomialtimetest.2002.[5] R.BhattaeharjeeandP.Pandey,Primalitytesting.2OO 1.TheApplicationofModernAlgebra ?Way ofThinkinginNumberTheoryZHANGQing,TANGZai—liang(DepartmentofMathematicsandInformationScience,MianyangNormalUniversity,Mian yang,Sichuan621000)Abstract:Inthispaper,wefirsthaveadiscussionofthealgebraapproachforsometheoremsinelementarynumbertheory,andthenwehaveanintroductiontothepolynomialtimeinthejudgmentofpri menumbe r.Keywords:group;ring;module;numbertheory;primenumber 关 键 词: 近世 代数 思想 方法 数论 中的 应用
天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。