回归分析常数项t值没有显著异于零怎么办_一文详解经典回归分析

d82eb1a1704bec52e9fc17a13463bffa.png

在如今机器学习、数据科学、人工智能热潮下,回归分析似乎成了家喻户晓的东西。实际上回归分析自Galton爵士提出以及Pearson和Fisher的理论的加持,经过一百多年的发展,早已成了发现客观规律的有力武器。回归分析的文章已经多得数不胜数了,这篇文章也许会有点不同:我一直力求详细。这篇文章是一文详解t检验的延续,从一元线性回归的理论出发,涉及到回归系数的估计、无偏性的证明、方差的计算、显著性检验和预测,再推广到多元线性回归模型(用矩阵来研究会非常方便)。

从函数到回归模型

早在初中我们就学过一元一次函数:

给定

后,这是一条
确定的直线, 只需要两点就可以确定的直线,给出一个新的
,就可以唯一确定一个落在这条直线上的
。这为我们线性回归的思想打下了基础。我们在等号右边加一个随机扰动项(又叫噪声,noise),就成了一元线性回归模型:

只不过我们更习惯这样的表达:

代表每一个样本点,取的是个体的英文identity的首字母。

要注意的是(1)式不是回归模型,(2)式才是。究其原因在于(1)式代表一条确定的直线,而(2)式含有未知的随机扰动项。只有含随机扰动项的才是回归模型。回归模型与直线的相同点是自变量和因变量都是线性关系,不同点在于前者是不确定的,后者是确定的。

世界纷繁复杂,确定相比不确定简直是小巫见大巫。(2)式是真实的客观规律,但是未知、不可观测的。但我们可以假设要研究的因变量

关于自变量
的条件期望是自变量
的确定的线性关系,即:

假设中的

是未知的,称之为
回归系数。为了检验这个假设,我们要利用样本数据估计出
,将它们的估计值记为
,由此得出的相应的
的估计值为
,这样(3)式变为:

(4)式称为经验回归方程,这是对真实的、不可观测的(2)式的估计。

被解释变量(dependent variable)响应变量(response)、内生变量,
解释变量(independent variable)、外生变量。 但一般
是人为给定的常量,只有
是变量。

(2)、(3)和(4)可以推广到多个解释变量的情形:

基本假定

基本假定是对于随机扰动项

来说的,它有两个基本假定:
  1. 零均值、等方差、无自相关(Gauss-Markov假定
  1. 正态分布、相互独立假定
相互独立

其中

未知。
这两个基本假定是不一样的

由于

都是常数,那么
也是正态变量:

这一点在后面的推导中很有用。

一元线性回归模型

这部分我们结合向量来推导。对于

个样本,即
,我们可以将被解释变量、解释变量、回归系数和随机扰动项表示为向量:

其中随机扰动项

满足基本假定,有:

其中

阶单位方阵。在解释变量前面添加全1向量形成
设计矩阵(Design Matrix)

这样模型可改写为:

1.利用最小二乘法估计回归系数并证明存在且唯一

估计回归系数的一种方法是最小二乘法(Least Square Method, LSE),为了与广义最小二乘法相区别,有人也称之为普通最小二乘(Ordinary Least Square, OLS)。如果回归方程对样本拟合得较好,能较好地反映客观规律,那么真实值

和回归值
的“距离”会较小。对于这个“距离”的定义,我们采用残差平方和:

其中

是残差平方和Sum of Squares for Error的缩写。令
取得最小值的
,就是它们的最小二乘估计(记得要加一个帽子):

只需要对于

求偏导数并令其为0:

这两式进一步化简:

解方程组(加帽子):

得到最小二乘估计:

实际上

的表达式可以接着化简(若不加说明,
表示
):

不妨记:

那么(13)可以写为:

实际上(13)还可以改写为:

或者:

(14)在后面会用到。

有一个问题,这里求偏导数并令其为0得到的是

的极小值点,如何证明它就是函数的最小值点?我们需要考察
关于
矩阵:

由于

是对称阵,若它满秩,则它正定,那么
的极小值点就是最小值点,且唯一。而它满秩的充要条件是向量
与全1向量不线性相关。这个条件一般情况下都满足的。

我们定义残差

,从而残差向量:

那么(9)和(10)说明了如下事实:

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值