双侧检验的p值和单侧检验_关于单侧检验中备择假设和原假设的设定

14816e087d56fcab82ddacdf89bd17d5.png

在假设检验中,双侧检验的假设为H0:μ=μ0,H1:μ≠μ0。但是在单侧检验中要判断是使用左单侧检验还是右单侧检验,两者对应的假设是相反的,如果用错检验,很可能得到错误的结论。对同一个问题使用不同侧的单侧检验,如果得到相同的结论,仅仅是因为两者的拒绝域存在存在交集,一侧检验的样本观测值落在交集之内,另一侧检验的样本观察值落在交集之外。在有讲述假设检验的教材中,很少有对单侧检验中备择假设和原假设的设定进行讲解。关于单侧检验假设的设定到现在还是没有一致的说法,作为统计学的学生有时候也会对设定单侧检验的假设感到困惑。所以,我特地收集了关于单侧检验中备择假设和原假设的设定的相关资料。

补充:为什么说如果用错检验,很可能得到错误的结论?

开头所说的“如果用错检验,很可能得到错误的结论。”有网友提出质疑或者反对,下面以贾俊平的《统计学》中的例子简单说明一下。

某种灯泡的质量标准是平均燃烧寿命不得低于1000小时。已知灯泡批量产品的燃烧寿命服从正态分布,且标准差为100小时。商店欲从工厂进货,随机抽取81个灯泡检查,测得

=990小时,问商店是否决定购进这批灯泡(α=0.05)?

使用左侧检验:

H0:μ≥1000

H1:μ<1000

Z=

=-0.9

拒绝域为Z≤-Za,-0.9>-1.645,没有落入拒绝域,所以不能拒绝原假设,该批生产的灯泡达到规定标准。

使用右侧检验:

H0:μ≤1000

H1:μ>1000

Z统计量同上,-0.9

拒绝域为Z≥Za,因为-0.9<1.645,没有落入拒绝域,所以不能拒绝原假设,该批生产的灯泡没有达到规定标准。

左侧和右侧检验都不能拒绝原假设,得到了相反的结论。

ddc41e2f73b76cb2e5a3fdc38143d246.png

左侧检验和右侧检验存在共同的接受(H0)域,也就是正负临界值的区间内,当Z统计量落入该区域,左侧检验和右侧检验都不能拒绝原假设,从而得到相反的结论。如果Z统计量落入左侧检验的拒绝域内,则在左侧检验中拒绝原假设,右侧检验中不能拒绝原假设,两侧的检验会得到相同的结论。同理,如果Z统计量落入右侧检验的拒绝域内,两侧的检验也会得到相同的结论。所以,为什么说用错检验,很可能得到错误的结论而不是一定得到错误的结论,具体视通过样本数据得到的统计量而定。

备择假设和原假设的设定的相关资料

教材:

高等教育出版社的《概率论与数理统计》:

仅仅介绍什么是备择假设,什么是原假设,没有给出假设设定的标准。

书中关于单侧检验的例题1 : 公司怀疑生产商在牛奶掺水牟利,问生产商牛奶是否掺水。

原假设 : 牛奶未掺水

备择假设 : 牛奶已掺水

本人拙见 : 重点在于“怀疑”两个字,把想给予支持的假设作为备择假设。

例题2 : 抽查一批元件的寿命,问是否有理由认为元件的平均寿命大于225小时。

原假设 : 元件的平均寿命小于等于225小时

备择假设 : 元件的平均寿命大于225小时

本人拙见 : 对于是否有理由认为的问题,研究者应该是更倾向于证明有理由认为,所以把元件的寿命大于225小时作为备择假设。

茆诗松的《概率论与数理统计》:

常把没有把握不能轻易肯定的命题作为备择假设,而把没有充分理由不能轻易否定的命题作为原假设。

例题1 : 某厂生产的微波炉长期以来都符合辐射控制指标(辐射量不超过0.12),现抽查25台微波炉,得到样本均值0.1203,问在α=0.05水平上,该厂生产的微波炉辐射量是否升高。

原假设 : 辐射量没有升高(教材指出 : 由于长期以来该厂的辐射量不超过0.12,故将其作为原假设)

备择假设 : 辐射量升高了

本人拙见 : 长期符合标准,可以认为是原有的一般认知,将其作为原假设。

例题2 : 某厂需要玻璃纸作包装,按规定供应商供应的玻璃纸横延伸率不应低于65,现从近期来货中抽查了100个样品,得样本均值=55.06,问在α=0.05水平上是否接受这批玻璃纸。

原假设 : 玻璃纸延伸率达到标准

备择假设 : 延伸率没达到标准(教材指出 : 由于若不接受这批玻璃纸需作退货处理,必须慎重,故将其作为备择假设)

本人拙见 : 样本均值明显低于要求的指标,所以从厂家的角度应该是怀疑供应商的玻璃纸质量不过关,用不达标作为备择假设。

贾俊平的《统计学》:

如何确定假设并没有固定的统一标准,假设的确定通常与所要检验的问题的性质、检验者所要达到的目的有一定关系,也与检验员的经验和知识水平有关。不过,在假设检验中一般是把希望证明的命题放在备择假设上,而把原有的、传统的观点或结论放在原假设上,这样可以更好地体现假设检验的价值。

例题1 :批发商抽查100个灯泡的寿命,样品均值为960小时(略小于1000小时的标准),问是否应该购买这批灯泡。

原假设 : 灯泡的总体平均寿命达到标准

备择假设 : 灯泡的总体平均寿命没有到标准

本人拙见 : 教材是通过问题研究的是上限/下限来判断使用哪一侧的单侧检验。书中指出样本均值略小于1000小时的情况会经常出现,批发商更为关注可以容忍的下限。左单侧检验又称为下限检验,通过判断使用哪一侧的检验来决定备择假设的设立。

例题2 : 抽查50个袋装食品的重量,规定不符合标准的比例到达5%就不得出厂,问这批食品是否出厂。

原假设 : 不符合标准的比例小于等于5%

备择假设 : 不符合标准的比例大于5%

本人拙见 : 和上题类似,但关注的是上限。

通过上面教材的例题,你应该找到了一点规律,单单应付期末考试是没有问题的。虽然有两本教材没有给出假设设定的标准,但是上面三本教材的例题中设定原假设和备择假设的思想是相同的,都符合茆诗松《概率论与数理统计》中:“常把没有把握不能轻易肯定(可以理解为证明)的命题作为备择假设,而把没有充分理由不能轻易否定的命题作为原假设。”但是仅靠这句话去建立假设显然是不妥的。如何选取假设需要在实践中积累经验,根据实际情况去考虑。

相关研究 :

黄发贵的《单侧假设检验中备择假设的设定依据》:

原假设是在一次试验中有绝对优势出现的事件,而备择假设在一次试验中不易发生的事件。在进行单侧检验时,最好把原假设取为预想结果的反面,即把希望证明的命题放在备择假设上。由于把希望证明的命题放在了备择假设上,只要检验样本落入备择假设区域内,结论为接受备择假设,拒绝原假设,这时就有足够理由认为证明了备择假设的真,原假设的假。

杨少华的《参数假设检验中原假设与备择假设的交换问题》:

根据两类错误中后果严重的错误成为第Ⅰ类错误。

当研究的目的是参数是否已经发生变化时,原假设的设立应建立在过去经验的基础之上,没有足够的证据是不能随意否定它的。

张玉环的《浅谈假设检验中原假设和备择假设的建立》:

  1. 往往把有把握的、不能轻易被否定的命题作为原假设,而把无把握的、不能轻易肯定的命题作为备择假设。
  2. 当我们的目的是希望取得对某一陈述强有力的支持时,把这一陈述的对立面作为原假设。
  3. 尽量使后果严重的错误成为第一类错误。
  4. 若仅仅是判断一个陈述是否成立,并不同时考虑其他陈述,则此时直接把该陈述定为原假设。
  5. 把根据历史资料所提供的陈述作为原假设。
  6. 根据建立假设的角度和侧重点。
  7. 便于数学上处理的方便。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值