lingo纳什均衡代码_传统的战略式博弈求解纳什均衡方法——虚拟博弈(Fictitious Play)讲解及其代码...

本文介绍了博弈论中的虚拟博弈(Fictitious Play)方法,这是一种用于求解纳什均衡的传统策略。内容包括虚拟博弈的基本思想,即智能体根据对手历史平均策略选择最优策略,并逐步收敛到纳什均衡。通过石头剪刀布的例子进行解释,指出虚拟博弈仅适用于零和或包含纯策略纳什均衡的常和博弈,且收敛结果可能依赖于初始策略和收益矩阵。文章最后提供了虚拟博弈的Lingo代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

虚拟博弈是博弈论中一种传统的方法,其历史真的非常久远,于1951年被Brown, George W 提出。

其核心思想非常简单,就是利用博弈论中常用的反应函数思想。使每个智能体拥有两个策略集。一个是最优策略集,一个是历史平均策略集。在每一轮博弈的开始,每个均智能体根据对手的历史平均策略集,找到一个最优的针对策略。然后根据历史平均策略和本轮最优策略更新自己的历史平均策略。

拿石头剪刀布举例子:首先第一轮随机出拳,如果P1石头,P2剪刀。在第二轮时,P1根据P2的历史数据(P2只出了剪刀)得出自己应该出石头,则P1还是出石头,P2根据P1历史数据(P1只出了石头)得出自己应该出布。所以第二轮P1石头,P2布;玩家更新自己的历史策略集P1还是只出了石头,P2有50%的情况出了剪刀,50%的情况出布,以此类推。。。随着迭代的继续,策略会慢慢收敛到纳什均衡。

1eb89ad6a244b97213c23c3d4f3a9b85.png

但是,虚拟博弈并不能解决所有问题。虚拟博弈只能解决零和博弈,或者是包含纯策略纳什均衡解的常和博弈。在常和博弈中如果存在多个纳什均衡,则虚拟博弈收敛的结果会由收益矩阵和初始策略有关,并不能保证收敛到“最优均衡”。此外,虚拟博弈依赖于问题是战略式描述,如果要求扩展式的问题,则一直等到2015年FSP (Fictitious Self-Play) 虚拟自我博弈出现才能处理&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值