Torchmeta 是 PyTorch 中用于小样本(few-shot)学习和元学习(meta-learning)的扩展和数据加载器的工具。
Torchmeta 包含了主流的元学习基准,与 Torchvision和 PyTorch的DataLoader完全兼容。
【特性】
- - Torchmeta 通过少量的分类和回归为大多数标准基准提供了 DataLoader,并提供了新的元数据集。
- - 数据加载器与 PyTorch 的标准数据组件完全兼容,例如 Dataset 和 DataLoader。 Torchmeta 为所有可用的基准提供了相同的界面,从而使不同数据集之间的转换尽可能无缝。
- - Torchmeta 还对 PyTorch 进行了一些扩展,以简化与元学习算法兼容的模型的开发,其中一些需要更高阶的区分。
- - 可用的基准有助于为开发新的元学习算法提供参考。
- - Torchmeta 提供了一个框架,研究人员可以围绕该框架构建自己的元学习算法,而不是使数据管道适应其方法。
- - Torchmeta 通过将元数据集与算法本身解耦来促进代码重用,从而提供了这一抽象层。
项目主页:https://tristandeleu.github.io/pytorch-meta/
Github:GitHub - tristandeleu/pytorch-meta: A collection o...
关键词:#PyTorch##工具推荐##元学习##Few-shot##小样本学习#
Datasets available
- Few-shot regression (toy problems):
- Sine waves (Finn et al., 2017)
- Harmonic functions (Lacoste et al., 2018)
- Sinusoid & lines (Finn et al., 2018)
- Few-shot classification (image classification):
- Omniglot (Lake et al., 2015, 2019)
- Mini-ImageNet (Vinyals et al., 2016, Ravi et al., 2017)
- Tiered-ImageNet (Ren et al., 2018)
- CIFAR-FS (Bertinetto et al., 2018)
- Fewshot-CIFAR100 (Oreshkin et al., 2018)
- Caltech-UCSD Birds (Hilliard et al., 2019, Wah et al., 2019)
- Double MNIST (Sun, 2019)
- Triple MNIST (Sun, 2019)
- Few-shot segmentation (semantic segmentation):
- Pascal5i 1-way Setup

版权声明
本内容经授权转载自 @CVer @Amusi , @白小鱼 对内容有编辑。
原始标题 Torchmeta:PyTorch的元学习和小样本学习库