微博 用户画像_深度解析丨微博的用户画像是怎样构建的?

微博用户画像构建涉及用户属性和兴趣维度的标签化。属性信息包括性别、年龄等,通过用户注册、引导和第三方获取。兴趣标签来源于用户自定义、关注用户、微群等,通过权重计算、时效性调整和关注关系分析确定。兴趣与生产能力的区分通过关注图识别内容创造者。此画像服务于微博业务,数据主要来源于微博平台。
摘要由CSDN通过智能技术生成

【文章摘要】从用户模型维度的划分可以看出,属性和兴趣维度的用户模型都可以归入用户画像(User Profile)的范畴。所谓用户画像,简单来说就是对用户的信息进行标签化。如图1所示。一方面,标签化是对用户信息进行结构化,方便计算机的识别和处理;另一方面,标签本身也具有准确性和非二义性,也有利于人工的整理、分析和统计。

用户画像一般是指将用户信息标签化的过程,在分析用户属性这种静态维度时,通过平台自身的合理引导便能获取到精准的用户信息,那么关于”用户兴趣“这种可变动态的属性该怎么去构建用户画像呢?这个新浪微博的案例或 ...

1.概述

从用户模型维度的划分可以看出,属性和兴趣维度的用户模型都可以归入用户画像(User Profile)的范畴。所谓用户画像,简单来说就是对用户的信息进行标签化。如图1所示。一方面,标签化是对用户信息进行结构化,方便计算机的识别和处理;另一方面,标签本身也具有准确性和非二义性,也有利于人工的整理、分析和统计。

用户信息标签化

用户属性指相对静态和稳定的人口属性,例如:性别、年龄区间、地域、受教育程度、学校、公司……这些信息的收集和建立主要依靠产品本身的引导、调查、第三方提供等。微博本身就有比较完整的用户注册引导、用户信息完善任务、认证用户审核、以及大量的合作对象等,在收集和清洗用户属性的过程中,需要注意的主要是标签的规范化以及不同来源信息的交叉验证。

用户兴趣则是更加动态和易变化的特征,首先兴趣受到人群、环境、热点事件、行业……等方面的影响,一旦这些因素发生变化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值