数轴上的动点问题难不难?动点变式题确实特别难?对,特别难,难在要求学生具有超丰富的空间想象力和严谨的思维逻辑力,笔者就在数轴上的动点问题探究变式题二(数据有所修改)继续进行分享,还是用几何图形和代数方法来解题。
如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为14cm2. OC边长为4cm.
将长方形OABC沿OA所在直线水平移动,移动后的长方形记为O'A'B'C'.若D为线段AA' 的中点,点E在线段OO'上,且OE=1/3OO',求当长方形OABC移动的距离为多少时,D、E两点到原点O的距离相等?

解:由题意可知:
OA=14=3.5cm
题目要求:若D为线段AA' 的中点,点E在线段OO'上,且OE=OO',求当长方形OABC移动的距离为多少时,D、E两点到原点O的距离相等?
一、首先用几何画板进行图形轨迹分析,解决问题:
⑴首先,让长方形OABC向数轴的正方向移动,如图2:

∵ 发现越往右移动,始终OD>OE,∴移动长方形OABC向右移动,得不到OD=OE
⑵要使 D、E两点到原点O的距离相等,我们只有向左移动长方形,得到如下图形:

从图表中,我们发现OE=OD时,长方形向左移动3个单位,重叠距离为0.5个单位,相等的距离为2个单位。
∴当长方形OABC移动的距离为3个单位时,D、E两点到原点O的距离相等。
二、使用完几何画板解题,我们用代数形式验证答案的正确性?
解:设移动的距离为x,由题意得
x*2/3=3.5-x+x/2
化简整理得:
7/6*x=3.5
解之得:
x=3
答:略
总结:用代数解题,需要使用分类讨论,分析得到只有长方形OABC向数轴左边移动,才能得到我们需要的结果。
三、探究数轴动点问题三(供读者自行解答):
如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;

(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:

且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.
PS:
码字不易,欢迎读者在评论区进行评论,您的建议和评论对我创作大于裨益,欢迎转发与关注,谢谢!----爱好中草药的数学老师。