python迭代法求解方程_python实现迭代法求方程组的根过程解析

这篇文章主要介绍了python实现迭代法求方程组的根过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

有方程组如下:

2019112585649921.png?201910258575

迭代法求解x,python代码如下:

import numpy as np

import matplotlib.pyplot as plt

A = np.array([[8, -3, 2], [4, 11, -1], [6, 3, 12]])

b = np.array([[20, 33, 36]])

# 方法一:消元法求解方程组的解

result = np.linalg.solve(A, b.T)

print('Result:\n', result)

# 方法二:迭代法求解方程组的解

B = np.array([[0, 3/8, -2/8], [-4/11, 0, 1/11], [-6/12, -3/12, 0]])

f = np.array([[20/8, 33/11, 36/12]])

error = 1.0e-6

steps = 100

xk = np.zeros((3, 1)) # initialize parameter setting

errorlist = []

for k in range(steps):

xk_1 = xk

xk = np.matmul(B, xk) + f.T

print('xk:\n', xk)

errorlist.append(np.linalg.norm(xk-xk_1))

if errorlist[-1] < error:

print('iteration: ', k+1)

break

# 把误差画出来

x_axis = [i for i in range(len(errorlist))]

plt.figure()

plt.plot(x_axis, errorlist)

结果如下:

2019112585649922.png?201910258575

2019112585649923.png?201910258575

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值