01
前 事
其实我一开始是不喜欢三元一次方程组的,因为使用起来很麻烦,不好用。而且经验表明,凡是二元一次方程组可以解决的问题,基本上都能用一元一次方程解决,凡是一元一次方程能解决的问题,基本上都能用算术法解决。既然是这样,解二元一次方程组都已经够麻烦了,我还解三元的干嘛啊?确实,书上对于这部分的要求是选学。02
不 满
但是现在的选拔制度慢慢变了味儿:你也会我也会,那咋选拔啊?于是就有了所谓的“偏难怪”,我一直以为这个题目是偏难怪,因为一直以来学生掌握的都不太好,所以我从感情上对于它们是很不友好的,因为我只喜欢那种从字里行间散发出正气的题目。03
缘 来
事情的转机出现在若干年前。那是一个阳光明媚的上午,督导组到教室去指导,一番点评让我豁然开朗:“其实那道题目的本质是三元一次方程组,如果学生会解三元一次方程组,这道题就简单多了,你现在等于是把题目做难了。”从此之后我从感情上都更倾向于先把方程组的解法学完——因为这是工具,然后拿着工具去解决问题。明白了这个之后,今天的两道题目就脱离了“偏难怪”的范畴,再做起来也感觉可爱多了。04
共 赏
方法一:当成三元一次方程组求解。 方法二:当成含参(参数)的二元一次方程组求解。 方法三:x+y是x+2y和x-y的线性组合,看出系数即可。 两个系数不是凭空而来,可由待定系数法来求。 方法四:适用于数感比较好的同学,系数可由上面得到。05
再 探
方法一:假如这是个选择题或者填空题。 方法二:适用于数感比较好的同学。缺点:方法来的很突兀,知其然,不知其所以然,何由以知其所以然。 方法三:x+y+z是x+2y-z和2x-y+8z的线性组合。 系数仍然可以由待定系数法求得。 结论:要求的代数式x+y+z中,如果x、y、z的系数之比不是1:1:1,会导致关于m、n的三个二元一次方程组无解,则结果不确定。方法四:当成含参的二元一次方程组来求解。计算量略大。06
释 疑
上面的例2中,一共有三个未知数,但是只有两个方程,所以x、y、z的值是不确定的,但是三者之间存在互相依存的关系,“你变我也变”、“你定我也定”(前者不太严谨),即当有一个未知数的值确定之后,另外两个也随之确定了。后面我们会学到,这种关系叫作函数关系,可以把x、y看成是z的函数,理解起来就更通透了。07
收 尾
或许,根本没有什么不好的题目,只有不好的解题人。如果我们觉得题目不够好,那是我们还需要安心学习。