三元一次方程组算法_我和三元一次方程组

本文详述了三元一次方程组的解决过程,从不满现状到深入研究,逐步解析算法原理,探讨其在数学问题中的应用,并解答常见疑问,带领读者一同探索这一数学领域的奥秘。
摘要由CSDN通过智能技术生成

01

前 事

其实我一开始是不喜欢三元一次方程组的,因为使用起来很麻烦,不好用。而且经验表明,凡是二元一次方程组可以解决的问题,基本上都能用一元一次方程解决,凡是一元一次方程能解决的问题,基本上都能用算术法解决。既然是这样,解二元一次方程组都已经够麻烦了,我还解三元的干嘛啊?确实,书上对于这部分的要求是选学。

02

不 满

但是现在的选拔制度慢慢变了味儿:你也会我也会,那咋选拔啊?于是就有了所谓的“偏难怪”,我一直以为这个题目是偏难怪,因为一直以来学生掌握的都不太好,所以我从感情上对于它们是很不友好的,因为我只喜欢那种从字里行间散发出正气的题目。

03

缘 来

事情的转机出现在若干年前。那是一个阳光明媚的上午,督导组到教室去指导,一番点评让我豁然开朗:“其实那道题目的本质是三元一次方程组,如果学生会解三元一次方程组,这道题就简单多了,你现在等于是把题目做难了。”从此之后我从感情上都更倾向于先把方程组的解法学完——因为这是工具,然后拿着工具去解决问题。明白了这个之后,今天的两道题目就脱离了“偏难怪”的范畴,再做起来也感觉可爱多了。

04

共 赏

9a49e41759ca2c527fbf22ead410a600.png 方法一:当成三元一次方程组求解。 d1707e6abfb09ad75b221ac0af6d487b.png方法二:当成含参(参数)的二元一次方程组求解。 771e229479d79fbb24316b9b5adf22ad.png方法三:x+y是x+2y和x-y的线性组合,看出系数即可。 a93bcbfb27a114fbc3bb2b5cad12efd6.png两个系数不是凭空而来,可由待定系数法来求。 5aa92df9318886933787cc6bbe349d1a.png方法四:适用于数感比较好的同学,系数可由上面得到。 41b48acb375cdbefefa14420986ec891.png

05

再 探

20bfeac7e66c254e30706935cf677e73.png方法一:假如这是个选择题或者填空题。 2a4df0f34af83c01831615c70479cd52.png方法二:适用于数感比较好的同学。缺点:方法来的很突兀,知其然,不知其所以然,何由以知其所以然。 1d557e494d707f51bb8a5ec0dd2e36ea.png方法三:x+y+z是x+2y-z和2x-y+8z的线性组合。 24a7182bd85020ba464c00a0071c6abe.png系数仍然可以由待定系数法求得。 7aee524f232fdad028e7593fae26a564.png结论:要求的代数式x+y+z中,如果x、y、z的系数之比不是1:1:1,会导致关于m、n的三个二元一次方程组无解,则结果不确定。方法四:当成含参的二元一次方程组来求解。计算量略大。 327023eb93b5e13254430a425e69a6bd.png

06

释 疑

上面的例2中,一共有三个未知数,但是只有两个方程,所以x、y、z的值是不确定的,但是三者之间存在互相依存的关系,“你变我也变”、“你定我也定”(前者不太严谨),即当有一个未知数的值确定之后,另外两个也随之确定了。后面我们会学到,这种关系叫作函数关系,可以把x、y看成是z的函数,理解起来就更通透了。

07

收 尾

或许,根本没有什么不好的题目,只有不好的解题人。如果我们觉得题目不够好,那是我们还需要安心学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值