java 求百分数_java中两个数相除,得到的百分数怎么求

本文探讨了质数的定义、性质以及与之相关的数学问题,包括哥德巴赫猜想。通过实例展示了质数分布的无规则性,并提及了与质数相关的公式和猜想,如n^2+n+41的形式。同时,提到了数学家们对质数研究的重要性和挑战,特别是著名的未解问题——哥德巴赫猜想。
摘要由CSDN通过智能技术生成

2016-09-01 01:02龚宇飞 客户经理

6 有红绿蓝三种颜色同样大小纽扣两包(每包中三种颜色的纽扣都有),第二包纽扣的颗数是第一包的1.5倍,第一包里红纽扣占百分之二十,第二包里蓝纽扣占百分之四十五,第一包绿纽扣所占百分数与第二包绿纽扣所占百分数相同,现在将这两包纽扣混合在一起,红纽扣占百分之二十六,这时蓝纽扣占百分之几?

7 有铅笔若干支,分一半加一支送给甲,分余下的一半加两支送给乙,还剩下6支,这些铅笔原有多少支?

8 仓库中原有一批水泥,用去百分之二十后,又运进180包,这时仓库中水泥与原有水泥的比是5比4,仓库中原有水泥多少包?

9 骑车每小时行8千米,乘车每小时行40千米,已知同一段路骑车比乘车多用36分,这段路长多少千米?

10 某体育用品商店进了一批篮球,分一级品和二级品,二级品比一级品进价便宜百分之二十,按优质优价的原则,一级品按百分之二十的利润率定价,二级品按百分之十五的利润率定价,一级品比二级品每个篮球贵28元,问一级品定价多少元?

小明家和小华家在一条直线上,两人从家中同时出发相向而行,在离小明家500米处第一次相遇,相遇后两人保持原速度继续前进,到达对方家后立即返回,又在离小华家600米处第二次相遇,求两家距离多少米?

1.就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数。还可以说成质数只有1和它本身两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?

2.素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任

何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12

=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以

外,不能表示为其它任何两个整数的乘积,所以13是一个素数。

编辑本段质数的概念

所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。

编辑本段质数的奥秘

质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。

有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。

说起质数就少不了哥德巴赫猜想,和著名的“1+1”

哥德巴赫猜想 :(Goldbach Conjecture)

内容为“所有的大于2的偶数,都可以表示为两个素数”

这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大......余下全文>>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值